Статті в журналах з теми "Operando monitoring"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Operando monitoring.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Operando monitoring".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lemineur, Jean-François, Jean-Marc Noël, Catherine Combellas, and Frederic Kanoufi. "(Invited) Operando Optical Monitoring of Nanoparticle Electrodeposition." ECS Meeting Abstracts MA2020-01, no. 18 (May 1, 2020): 1139. http://dx.doi.org/10.1149/ma2020-01181139mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jin, Yan, Lin Zhou, Jianyu Yu, Jie Liang, Wenshan Cai, Huigang Zhang, Shining Zhu, and Jia Zhu. "In operando plasmonic monitoring of electrochemical evolution of lithium metal." Proceedings of the National Academy of Sciences 115, no. 44 (October 15, 2018): 11168–73. http://dx.doi.org/10.1073/pnas.1808600115.

Повний текст джерела
Анотація:
The recent renaissance of lithium metal batteries as promising energy storage devices calls for in operando monitoring and control of electrochemical evolution of lithium metal morphologies. While the development of plasmonics has led to significant advancement in real-time and ultrasensitive chemical and biological sensing and surface-enhanced spectroscopies, alkali metals featured by ideal free electron gas models have long been regarded as promising plasmonic materials but seldom been explored due to their high chemical reactivity. Here, we demonstrate the in operando plasmonic monitoring of the electrochemical evolution of lithium metal during battery cycling by taking advantage of selective electrochemical deposition. The relationships between the evolving morphologies of lithium metal and in operando optical spectra are established both numerically and experimentally: Ordered growth of lithium particles shows clear size-dependent reflective dips due to hybrid surface plasmon resonances, while the formation of undesirable disordered lithium dendrites exhibits a flat spectroscopic profile with pure suppression in reflection intensity. Under the in operando plasmonic monitoring enabled by the microscopic morphology of metal, the differences of lithium evolutionary behaviors with different electrolytes can be conveniently identified without destruction. At the intersection of energy storage and plasmonics, it is expected that the ability to actively control and in operando plasmonically monitor electrochemical evolution of lithium metal can provide a promising platform for investigating lithium metal behavior during electrochemical cycling under various working conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Flores, Eibar, Nataliia Mozhzhukhina, Ulrich Aschauer, and Erik J. Berg. "Operando Monitoring the Insulator–Metal Transition of LiCoO2." ACS Applied Materials & Interfaces 13, no. 19 (May 4, 2021): 22540–48. http://dx.doi.org/10.1021/acsami.1c04383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lonergan, Alex, Umair Gulzar, Yan Zhang, and Colm O'Dwyer. "Operando Photonic Stopband Monitoring of Lithium-Ion Battery Electrodes." ECS Meeting Abstracts MA2022-01, no. 1 (July 7, 2022): 112. http://dx.doi.org/10.1149/ma2022-011112mtgabs.

Повний текст джерела
Анотація:
Research in lithium-ion batteries is often focused on optimising the electrode performance of either the anode1 or cathode2. One common research strategy is to explore alternative electrode material candidates for use as both the anode3 and cathode4. Another approach involves optimising the performance of existing electrode materials through structured electrode architectures with nano-sized features. Incorporating nanostructure into electrode design has reported advantages of shorter ion diffusion lengths and improved rate capability during cycling5. A common and simple technique for introducing nanostructure to electrodes is the use of a photonic crystal template, particularly inverse opal photonic crystals. The porous geometry, highly interconnected material and nano-sized features of the pore walls are all believed to contribute to improved electrochemical performance in inverse opal electrodes6 7. Photonic crystal materials are more than just a structural template and are renowned for their ability to tune the wavelengths of light propagating in the structure8 9. The repeating dielectric material comprising the structure reflects specific wavelengths, known as the photonic bandgap or stopband, depending on the size of the repeating lattice and the refractive index contrast between the composite materials. Tuning the photonic stopband of various inverse opal materials has been extensively studied10 11. Inverse opal battery electrodes have yet to exploit the optical potential of the photonic stopband. Here, we showcase a fundamentally new operando analysis technique for lithium-ion battery electrodes adopting a photonic crystal structure. Visible spectroscopy is used to monitor the presence and position of the photonic stopband of the electrode material during battery cycling, see Figure 1. Capitalizing on the sensitivity of the photonic stopband to lattice size and refractive index contrast, shifts or changes in the optical spectrum can be correlated to the electrode environment and material performance. Several optical effects are observed throughout the cycling process and linked back to the battery performance of the anode. A TiO2 inverse opal anode is reported on here, yet the technique is versatile and should be applicable to a wide range of electrode materials possessing a photonic crystal structure. References Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.-S., Exploring Anomalous Charge Storage in Anode Materials for Next-Generation Li Rechargeable Batteries. Chemical Reviews 2020, 120 (14), 6934-6976. Xu, J.; Dou, S.; Liu, H.; Dai, L., Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2 (4), 439-442. Liang, B.; Liu, Y.; Xu, Y., Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power Sources 2014, 267, 469-490. Manthiram, A.; Song, B.; Li, W., A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials 2017, 6, 125-139. Mahmood, N.; Tang, T.; Hou, Y., Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective. Advanced Energy Materials 2016, 6 (17), 1600374. McNulty, D.; Carroll, E.; O'Dwyer, C., Rutile TiO2 Inverse Opal Anodes for Li-Ion Batteries with Long Cycle Life, High-Rate Capability, and High Structural Stability. Advanced Energy Materials 2017, 7 (12), 1602291. McNulty, D.; Geaney, H.; Buckley, D.; O'Dwyer, C., High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy 2018, 43, 11-21. John, S., Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58 (23), 2486-2489. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58 (20), 2059-2062. Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A., Optical Properties of Inverse Opal Photonic Crystals. Chemistry of Materials 2002, 14 (8), 3305-3315. Lonergan, A.; Hu, C.; O’Dwyer, C., Filling in the gaps: The nature of light transmission through solvent-filled inverse opal photonic crystals. Physical Review Materials 2020, 4 (6), 065201. Figure 1 (a) Schematic diagram of simultaneous electrochemical and optical characterisation techniques for photonic crystal electrodes. (b) Galvanostatic charge/discharge data for a TiO2 inverse opal electrode. (c) Optical spectrum for a TiO2 inverse opal submerged in LiPF6 electrolyte. (d) SEM image showing the ordered structure of a pristine TiO2 inverse opal. (e) Operando optical spectra obtained at 0.5 V intervals during discharge of the TiO2 inverse opal electrode. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Campillo-Robles, Jose Miguel, Damian Goonetilleke, Daniel Soler, Neeraj Sharma, Damian Martín Rodríguez, Thomas Bücherl, Malgorzata Makowska, Pinar Türkilmaz, and Volkan Karahan. "Monitoring lead-acid battery function using operando neutron radiography." Journal of Power Sources 438 (October 2019): 226976. http://dx.doi.org/10.1016/j.jpowsour.2019.226976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bolli, Christoph, Aurélie Guéguen, Manuel A. Mendez, and Erik J. Berg. "Operando Monitoring of F– Formation in Lithium Ion Batteries." Chemistry of Materials 31, no. 4 (January 17, 2019): 1258–67. http://dx.doi.org/10.1021/acs.chemmater.8b03810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Xiaohan, Claire Villevieille, Petr Novák, and Mario El Kazzi. "Insights into the chemical and electronic interface evolution of Li4Ti5O12 cycled in Li2S–P2S5 enabled by operando X-ray photoelectron spectroscopy." Journal of Materials Chemistry A 8, no. 10 (2020): 5138–46. http://dx.doi.org/10.1039/c9ta14147b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rodríguez-García, Laura, Roland Walker, Eyal Spier, Konrad Hungerbühler, and Fabian Meemken. "Mass transfer considerations for monitoring catalytic solid–liquid interfaces under operating conditions." Reaction Chemistry & Engineering 3, no. 1 (2018): 55–67. http://dx.doi.org/10.1039/c7re00179g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Köhnke, Katrin, Niklas Wessel, Jesús Esteban, Jing Jin, Andreas J. Vorholt, and Walter Leitner. "Operando monitoring of mechanisms and deactivation of molecular catalysts." Green Chemistry 24, no. 5 (2022): 1951–72. http://dx.doi.org/10.1039/d1gc04383h.

Повний текст джерела
Анотація:
The review presents spectroscopic and mathematical tools to perform operando investigations of mechanisms and deactivation pathways in homogeneous catalysis. Their potential is shown in two case studies, hydroformylation and asymmetric hydrogenation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Strobel, Vinzent, Julian Jonathan Schuster, Andreas Siegfried Braeuer, Lydia Katharina Vogt, Henrik Junge, and Marco Haumann. "Shining light on low-temperature methanol aqueous-phase reforming using homogeneous Ru-pincer complexes – operando Raman-GC studies." Reaction Chemistry & Engineering 2, no. 3 (2017): 390–96. http://dx.doi.org/10.1039/c6re00228e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Menzel, Jakub, Adam Slesinski, Przemyslaw Galek, Paulina Bujewska, Andrii Kachmar, Elżbieta Frąckowiak, Ayumi Washio, Hirofumi Yamamoto, Masashi Ishikawa, and Krzysztof Fic. "Operando monitoring of activated carbon electrodes operating with aqueous electrolytes." Energy Storage Materials 49 (August 2022): 518–28. http://dx.doi.org/10.1016/j.ensm.2022.04.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Menzel, Jakub, Adam Slesinski, Przemyslaw Galek, Paulina Bujewska, Andrii Kachmar, Elżbieta Frąckowiak, Ayumi Washio, Hirofumi Yamamoto, Masashi Ishikawa, and Krzysztof Fic. "Operando monitoring of activated carbon electrodes operating with aqueous electrolytes." Energy Storage Materials 49 (August 2022): 518–28. http://dx.doi.org/10.1016/j.ensm.2022.04.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Menzel, Jakub, Adam Slesinski, Przemyslaw Galek, Paulina Bujewska, Andrii Kachmar, Elżbieta Frąckowiak, Ayumi Washio, Hirofumi Yamamoto, Masashi Ishikawa, and Krzysztof Fic. "Operando monitoring of activated carbon electrodes operating with aqueous electrolytes." Energy Storage Materials 49 (August 2022): 518–28. http://dx.doi.org/10.1016/j.ensm.2022.04.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hobold, Gustavo M., Aliza Khurram, and Betar M. Gallant. "Operando Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium." Chemistry of Materials 32, no. 6 (February 24, 2020): 2341–52. http://dx.doi.org/10.1021/acs.chemmater.9b04550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ren, Xiaoyan, Jiawei Wang, Zhangquan Peng, and Lehui Lu. "Direct monitoring of trace water in Li-ion batteries using operando fluorescence spectroscopy." Chemical Science 9, no. 1 (2018): 231–37. http://dx.doi.org/10.1039/c7sc03191b.

Повний текст джерела
Анотація:
Operando fluorescence spectroscopy provides an effective platform for the direct monitoring of trace water in an operating Li-ion battery, with the assistance of nanosized coordination polymers as fluorescent probes.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Müller, Rafael J., Jinggang Lan, Karla Lienau, René Moré, C. A. Triana, Marcella Iannuzzi, and Greta R. Patzke. "Monitoring surface transformations of metal carbodiimide water oxidation catalysts by operando XAS and Raman spectroscopy." Dalton Transactions 47, no. 31 (2018): 10759–66. http://dx.doi.org/10.1039/c8dt01587b.

Повний текст джерела
Анотація:
Chemical and structural transformations at the electrode surface of metal carbodiimides MNCN (M = Co, Ni, Mn, Cu), were studied by operando Raman and XAS spectroscopy during electrocatalytic water oxidation
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Negahdar, Leila, Christopher M. A. Parlett, Mark A. Isaacs, Andrew M. Beale, Karen Wilson, and Adam F. Lee. "Shining light on the solid–liquid interface: in situ/operando monitoring of surface catalysis." Catalysis Science & Technology 10, no. 16 (2020): 5362–85. http://dx.doi.org/10.1039/d0cy00555j.

Повний текст джерела
Анотація:
Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zuo, Shouwei, Zhi‐Peng Wu, Huabin Zhang, and Xiong Wen (David) Lou. "Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis." Advanced Energy Materials 12, no. 8 (January 5, 2022): 2103383. http://dx.doi.org/10.1002/aenm.202103383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Viell, Jörn, Noemi K. Szekely, Gaetano Mangiapia, Claas Hövelmann, Caroline Marks, and Henrich Frielinghaus. "In operando monitoring of wood transformation during pretreatment with ionic liquids." Cellulose 27, no. 9 (April 18, 2020): 4889–907. http://dx.doi.org/10.1007/s10570-020-03119-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Yan, Xuefeng, Yin Xu, Baozhu Tian, Juying Lei, Jinlong Zhang, and Lingzhi Wang. "Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor." Applied Catalysis B: Environmental 224 (May 2018): 305–9. http://dx.doi.org/10.1016/j.apcatb.2017.10.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wu, Xiaohan, Claire Villevieille, Petr Novák, and Mario El Kazzi. "Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy." Physical Chemistry Chemical Physics 20, no. 16 (2018): 11123–29. http://dx.doi.org/10.1039/c8cp01213j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Klinser, Gregor, Heinz Krenn, and Roland Würschum. "Operando Monitoring of Charging Processes in Battery Cathodes by Magnetometry and Positron Annihilation." Materials Science Forum 1016 (January 2021): 1647–52. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.1647.

Повний текст джерела
Анотація:
Research in the field of modern battery materials demands characterization techniques which allow an inspection of atomistic processes during battery charging and discharging. Two powerful tools for this purpose are magnetometry and positron-electron annihilation. The magnetic moment serves as highly sensitive fingerprint for the oxidation state of the transition metal ions, thus enabling to identify the electrochemical ”active” ions. The positron lifetime on the other hand, is sensitive to open volume defects of the size of a few missing atoms down to single vacancies providing an unique insight into lattice defects induced by charging and discharging. An overview will be given on operando magnetometry studies of the important class of LiNiCoMn-oxide cathode materials (so-called NMC with Ni:Co:Mn ratios of 1:1:1 and 3:1:1) as well as of sodium vanadium phosphate cathodes. First operando positron annihilation studies on a battery cathode material (NMC 1:1:1) demonstrate the capability of this technique for battery research.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kaszkur, Zbigniew, Bogusław Mierzwa, Wojciech Juszczyk, Piotr Rzeszotarski, and Dariusz Łomot. "Quick low temperature coalescence of Pt nanocrystals on silica exposed to NO – the case of reconstruction driven growth?" RSC Adv. 4, no. 28 (2014): 14758–65. http://dx.doi.org/10.1039/c3ra48078j.

Повний текст джерела
Анотація:
We report an operando XRD/MS experiment on nanocrystalline Pt supported on silica, monitoring quick, low temperature coalescence of Pt in an NO atmosphere accompanied by surface reconstruction deduced from an apparent lattice parameter (ALP) evolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Niu, Xingxing, Jingxian Dong, Xue Lu Wang, and Ye-Feng Yao. "Enhanced photocatalytic reduction of Cr(vi) to Cr(iii) over g-C3N4 catalysts with Ag nanoclusters in conjunction with Cr(iii) quantification based on operando low-field NMR relaxometry." Environmental Science: Nano 7, no. 9 (2020): 2823–32. http://dx.doi.org/10.1039/d0en00384k.

Повний текст джерела
Анотація:
Ag nanoclusters are anchored on g-C3N4 for the photocatalytic reduction of Cr(vi), and experience real-time monitoring by operando low-field NMR relaxometry via quantifying the concentration of paramagnetic Cr(iii) in solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Saurel, D., A. Pendashteh, M. Jáuregui, M. Reynaud, M. Fehse, M. Galceran, and M. Casas‐Cabanas. "Experimental Considerations for Operando Metal‐Ion Battery Monitoring using X‐ray Techniques." Chemistry–Methods 1, no. 6 (May 7, 2021): 249–60. http://dx.doi.org/10.1002/cmtd.202100009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Harutyunyan, Avetik R., Oleg Kuznetsov, and Gugang Chen. "(Invited) High Energy Density and Ecofriendly Lithium-Ion Battery with Operando Monitoring." ECS Meeting Abstracts MA2022-01, no. 7 (July 7, 2022): 636. http://dx.doi.org/10.1149/ma2022-017636mtgabs.

Повний текст джерела
Анотація:
In addition to recent worldwide renewable energy commitments, advances in electrical vehicle technologies, flexible electronics, smart wearable devices, and internet of things, have contributed to the increasing demand for batteries with a wide range of electrochemical and electromechanical properties. In response, the battery industry has launched intensive research and development efforts in search for new materials, technologies, and concepts. However, these rapid developments give rise to a growing concern on the impact of this industry on Nature. Hence, the rapidly growing battery market demands resolutions for both energy and waste-management challenges in anticipation of about two million metric tons of annual battery waste generated globally. One way to resolve this energy and environment dilemma is by revising the conventional battery architecture to assure both high energy density and efficient recyclability aiming at circular economy. Within this strategy we fabricated self-standing composite electrodes that eliminated electrochemically inactive metal current collectors and binders from the Li-ion battery architecture, increasing energy density up to 40%. These electrodes were prepared via in situ mixing of as-grown single-wall carbon nanotubes (SWNTs) with aerosolized electrode active materials in ratios (≥0.25 wt%) that provide adequate electrical conductivity and mechanical robustness under stretching (≤15%), bending (d≥2 mm) and twisting (θ~180o) cycles. Remarkably, the resultant SWNT scaffold in composite electrodes operates as an intrinsic piezoresistive strain sensor (Gauge Factor ~6.2) that for the first time allows in situ/operando self-monitoring of battery structural health without interfering with electrochemical reactions. Moreover, the developed solution-free fabrication method eliminates hazardous, toxic, and environmentally harmful components and procedures from the electrode production line and allows their recycling by simple sonication and recovering of the active materials. In addition, the absence of current collector foils and binder allows for easy recycling and recovery of the constituent materials by using physical separation methods. These new features not only reduce consumption of the natural resources but also promote the eco-friendly circular economy for batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Klinser, G., H. Kren, S. Koller, and R. Würschum. "Operando monitoring of charging-induced defect formation in battery electrodes by positrons." Applied Physics Letters 114, no. 1 (January 7, 2019): 013905. http://dx.doi.org/10.1063/1.5081668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Passos, Aline Ribeiro, Camille La Fontaine, Leandro Martins, Sandra Helena Pulcinelli, Celso Valentim Santilli, and Valérie Briois. "Operando XAS/Raman/MS monitoring of ethanol steam reforming reaction–regeneration cycles." Catalysis Science & Technology 8, no. 24 (2018): 6297–301. http://dx.doi.org/10.1039/c8cy01596a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Li, Bing, Casey M. Jones, Thomas E. Adams, and Vikas Tomar. "Sensor based in-operando lithium-ion battery monitoring in dynamic service environment." Journal of Power Sources 486 (February 2021): 229349. http://dx.doi.org/10.1016/j.jpowsour.2020.229349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Arnold, Christopher, Jonas Böhm, and Carolin Körner. "In Operando Monitoring by Analysis of Backscattered Electrons during Electron Beam Melting." Advanced Engineering Materials 22, no. 9 (December 15, 2019): 1901102. http://dx.doi.org/10.1002/adem.201901102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Arlt, Tobias, Daniel Schröder, Ulrike Krewer, and Ingo Manke. "In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations." Phys. Chem. Chem. Phys. 16, no. 40 (2014): 22273–80. http://dx.doi.org/10.1039/c4cp02878c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Berry, Daniel B. G., Anna Codina, Ian Clegg, Catherine L. Lyall, John P. Lowe, and Ulrich Hintermair. "Insight into catalyst speciation and hydrogen co-evolution during enantioselective formic acid-driven transfer hydrogenation with bifunctional ruthenium complexes from multi-technique operando reaction monitoring." Faraday Discussions 220 (2019): 45–57. http://dx.doi.org/10.1039/c9fd00060g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Godeffroy, Louis, Paolo Ciocci, Anaclet Nsabimana, Mathias Miranda Vieira, Jean‐Marc Noël, Catherine Combellas, Jean‐François Lemineur, and Frédéric Kanoufi. "Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring." Angewandte Chemie 133, no. 31 (June 29, 2021): 17117–20. http://dx.doi.org/10.1002/ange.202106420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Godeffroy, Louis, Paolo Ciocci, Anaclet Nsabimana, Mathias Miranda Vieira, Jean‐Marc Noël, Catherine Combellas, Jean‐François Lemineur, and Frédéric Kanoufi. "Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring." Angewandte Chemie International Edition 60, no. 31 (June 29, 2021): 16980–83. http://dx.doi.org/10.1002/anie.202106420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Iffelsberger, Christian, Stefan Wert, Frank-Michael Matysik, and Martin Pumera. "Catalyst Formation and In Operando Monitoring of the Electrocatalytic Activity in Flow Reactors." ACS Applied Materials & Interfaces 13, no. 30 (July 20, 2021): 35777–84. http://dx.doi.org/10.1021/acsami.1c09127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kahr, Jürgen, Arlavinda Rezqita, Maria Antoniadou, Erwin Rosenberg, Daniela Fontana, and Marcus Jahn. "Fast Operando GCMS Gas Analysis for Monitoring Electrolyte Decomposition in Lithium Ion Batteries." ECS Meeting Abstracts MA2020-01, no. 1 (May 1, 2020): 108. http://dx.doi.org/10.1149/ma2020-011108mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Johnson, Kyle J., Lutz Wiegart, Andrew C. Abbott, Elias B. Johnson, Jeffery W. Baur, and Hilmar Koerner. "In Operando Monitoring of Dynamic Recovery in 3D-Printed Thermoset Nanocomposites by XPCS." Langmuir 35, no. 26 (June 7, 2019): 8758–68. http://dx.doi.org/10.1021/acs.langmuir.9b00766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Fehse, Marcus, Matteo P. Hogan, Sally Hiu-Tung Pang, Oliver Blackman, Erik M. Kelder, Alessandro Longo, and Maria Alfredsson. "Monitoring and quantifying morphological and structural changes in electrode materials under operando conditions." Journal of Power Sources 478 (December 2020): 228685. http://dx.doi.org/10.1016/j.jpowsour.2020.228685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Dutta, Abhijit, Akiyoshi Kuzume, Motiar Rahaman, Soma Vesztergom, and Peter Broekmann. "Monitoring the Chemical State of Catalysts for CO2 Electroreduction: An In Operando Study." ACS Catalysis 5, no. 12 (November 24, 2015): 7498–502. http://dx.doi.org/10.1021/acscatal.5b02322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Hartman, Thomas, Robin G. Geitenbeek, Gareth T. Whiting, and Bert M. Weckhuysen. "Operando monitoring of temperature and active species at the single catalyst particle level." Nature Catalysis 2, no. 11 (September 23, 2019): 986–96. http://dx.doi.org/10.1038/s41929-019-0352-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Guo, Shaohui, Yaohua Li, Songwei Tang, Yuanyuan Zhang, Xuanhua Li, Ana Jorge Sobrido, Maria‐Magdalena Titirici, and Bingqing Wei. "Monitoring Hydrogen Evolution Reaction Intermediates of Transition Metal Dichalcogenides via Operando Raman Spectroscopy." Advanced Functional Materials 30, no. 35 (July 9, 2020): 2003035. http://dx.doi.org/10.1002/adfm.202003035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Yang, Jinghao, Fangjie Mo, Jiaming Hu, Shuyang Li, Lizhao Huang, Fang Fang, Dalin Sun, Guangai Sun, Fei Wang, and Yun Song. "Revealing the dynamic evolution of Li filaments within solid electrolytes by operando small-angle neutron scattering." Applied Physics Letters 121, no. 16 (October 17, 2022): 163901. http://dx.doi.org/10.1063/5.0110830.

Повний текст джерела
Анотація:
Lithium dendrite (filaments) propagation in solid electrolytes (SEs) leading to short circuits is one of the biggest obstacles to the application of all-solid-state lithium metal batteries. Due to the lack of operando techniques that can provide high resolution, the insufficient knowledge of the lithium dendrite growth inside SEs makes it difficult to suppress the dendrite growth. To reveal the mechanism of the Li filament growth in SEs, we achieved real-time monitoring of the nanoscale Li filament growth by operando small-angle neutron scattering (SANS) in representative Li6.5La3Zr1.5Nb0.5O12 SEs. On continuous plating, the Li filament growth is not simply an accumulation of Li, but there is a dynamic evolution due to the competition between the Li filament growth and self-healing. With the aid of simulations and experiments, this dynamic competition was demonstrated to be highly dependent on temperature variation. The enhanced self-healing ability of Li at elevated temperatures plays a positive role in suppressing the Li filament growth. The heat therapy improved the cell's cycle life, which provided insight into suppressing the Li filament growth. Operando SANS with high Li sensitivity provides a platform for investigating Li filaments in SEs.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Staffolani, Antunes, Arianna Baldinelli, Linda Barelli, Gianni Bidini, and Francesco Nobili. "Early-Stage Detection of Solid Oxide Cells Anode Degradation by Operando Impedance Analysis." Processes 9, no. 5 (May 12, 2021): 848. http://dx.doi.org/10.3390/pr9050848.

Повний текст джерела
Анотація:
Solid oxide cells represent one of the most efficient and promising electrochemical technologies for hydrogen energy conversion. Understanding and monitoring degradation is essential for their full development and wide diffusion. Techniques based on electrochemical impedance spectroscopy and distribution of relaxation times of physicochemical processes occurring in solid oxide cells have attracted interest for the operando diagnosis of degradation. This research paper aims to validate the methodology developed by the authors in a previous paper, showing how such a diagnostic tool may be practically implemented. The validation methodology is based on applying an a priori known stress agent to a solid oxide cell operated in laboratory conditions and on the discrete measurement and deconvolution of electrochemical impedance spectra. Finally, experimental evidence obtained from a fully operando approach was counterchecked through ex-post material characterization.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Huang, Jiaqiang, Xile Han, Fu Liu, Charlotte Gervillié, Laura Albero Blanquer, Tuan Guo, and Jean-Marie Tarascon. "Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors." Energy & Environmental Science 14, no. 12 (2021): 6464–75. http://dx.doi.org/10.1039/d1ee02186a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Neyhouse, Bertrand J., Kevin M. Tenny, Yet-Ming Chiang, and Fikile R. Brushett. "A Flow-through Microelectrode Sensor for Monitoring in Operando Concentrations in Redox Flow Batteries." ECS Meeting Abstracts MA2021-01, no. 3 (May 30, 2021): 218. http://dx.doi.org/10.1149/ma2021-013218mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Niemöller, Arvid, Peter Jakes, Svitlana Eurich, Anja Paulus, Hans Kungl, Rüdiger-A. Eichel, and Josef Granwehr. "Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy." Journal of Chemical Physics 148, no. 1 (January 7, 2018): 014705. http://dx.doi.org/10.1063/1.5008251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Martinez, N., Z. Peng, A. Morin, L. Porcar, G. Gebel, and S. Lyonnard. "Real time monitoring of water distribution in an operando fuel cell during transient states." Journal of Power Sources 365 (October 2017): 230–34. http://dx.doi.org/10.1016/j.jpowsour.2017.08.067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Bah, Micka, Etoungh D. Manga, Hugues Blasco, Philippe da Costa, Martin Drobek, André Ayral, Gilles Despaux, Benoit Coasne, Emmanuel Le Clezio, and Anne Julbe. "Acoustic emission monitoring during gas permeation: a new operando diagnostic tool for porous membranes." Journal of Membrane Science 555 (June 2018): 88–96. http://dx.doi.org/10.1016/j.memsci.2018.02.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Santoro, Gonzalo, José Manuel Amarilla, Pedro Tartaj, and María Beatriz Vázquez-Santos. "Operando monitoring the nanometric morphological evolution of TiO2 nanoparticles in a Na-ion battery." Materials Today Energy 10 (December 2018): 23–27. http://dx.doi.org/10.1016/j.mtener.2018.08.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Schelhas, Laura T., Jeffrey A. Christians, Joseph J. Berry, Michael F. Toney, Christopher J. Tassone, Joseph M. Luther, and Kevin H. Stone. "Monitoring a Silent Phase Transition in CH3NH3PbI3 Solar Cells via Operando X-ray Diffraction." ACS Energy Letters 1, no. 5 (October 21, 2016): 1007–12. http://dx.doi.org/10.1021/acsenergylett.6b00441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії