Добірка наукової літератури з теми "One dimensional quasi periodic systems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "One dimensional quasi periodic systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "One dimensional quasi periodic systems"

1

Geng, Jiansheng, Jiangong You, and Zhiyan Zhao. "Localization in One-dimensional Quasi-periodic Nonlinear Systems." Geometric and Functional Analysis 24, no. 1 (January 28, 2014): 116–58. http://dx.doi.org/10.1007/s00039-014-0256-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Basu, C., A. Mookerjee, A. K. Sen, and P. K. Thakur. "Metal-insulator transition in one-dimensional quasi-periodic systems." Journal of Physics: Condensed Matter 3, no. 32 (August 12, 1991): 6041–53. http://dx.doi.org/10.1088/0953-8984/3/32/011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ma, Hong-ru, and Chien-Hua Tsai. "On the energy spectra of one-dimensional quasi-periodic systems." Journal of Physics C: Solid State Physics 21, no. 23 (August 20, 1988): 4311–24. http://dx.doi.org/10.1088/0022-3719/21/23/014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cohen, J., and Y. Avishai. "Scattering of edge states in quasi-one-dimensional periodic systems." Physica B: Condensed Matter 202, no. 1-2 (September 1994): 91–103. http://dx.doi.org/10.1016/0921-4526(94)00149-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McDermott, Danielle, Cynthia J. Olson Reichhardt, and Charles Reichhardt. "Stripe systems with competing interactions on quasi-one dimensional periodic substrates." Soft Matter 10, no. 33 (July 4, 2014): 6332. http://dx.doi.org/10.1039/c4sm01341g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pérez-Maldonado, M. T., G. Monsivais, V. Velasco, R. Rodríguez-Ramos, and C. Stern. "Electronic spectra of one-dimensional nano-quasi-periodic systems under bias." Superlattices and Microstructures 47, no. 6 (June 2010): 661–75. http://dx.doi.org/10.1016/j.spmi.2010.04.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

GENTILE, GUIDO. "Quasi-periodic motions in strongly dissipative forced systems." Ergodic Theory and Dynamical Systems 30, no. 5 (August 3, 2009): 1457–69. http://dx.doi.org/10.1017/s0143385709000583.

Повний текст джерела
Анотація:
AbstractWe consider a class of ordinary differential equations describing one-dimensional systems with a quasi-periodic forcing term and in the presence of large damping. We discuss the conditions to be assumed on the mechanical force and the forcing term for the existence of quasi-periodic solutions which have the same frequency vector as the forcing.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Otto, P. "Calculation of the polarizability and hyperpolarizabilities of periodic quasi-one-dimensional systems." Physical Review B 45, no. 19 (May 15, 1992): 10876–85. http://dx.doi.org/10.1103/physrevb.45.10876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Evangelou, S. N., and E. N. Economou. "Spectral density correlations and eigenfunction fluctuations in one-dimensional quasi-periodic systems." Journal of Physics: Condensed Matter 3, no. 29 (July 22, 1991): 5499–513. http://dx.doi.org/10.1088/0953-8984/3/29/005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

CORSI, LIVIA, and GUIDO GENTILE. "Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems." Ergodic Theory and Dynamical Systems 35, no. 4 (February 26, 2014): 1079–140. http://dx.doi.org/10.1017/etds.2013.92.

Повний текст джерела
Анотація:
AbstractWe consider one-dimensional systems in the presence of a quasi-periodic perturbation, in the analytical setting, and study the problem of existence of quasi-periodic solutions which are resonant with the frequency vector of the perturbation. We assume that the unperturbed system is locally integrable and anisochronous, and that the frequency vector of the perturbation satisfies the Bryuno condition. Existence of resonant solutions is related to the zeros of a suitable function, called the Melnikov function—by analogy with the periodic case. We show that, if the Melnikov function has a zero of odd order and under some further condition on the sign of the perturbation parameter, then there exists at least one resonant solution which continues an unperturbed solution. If the Melnikov function is identically zero then one can push perturbation theory up to the order where a counterpart of Melnikov function appears and does not vanish identically: if such a function has a zero of odd order and a suitable positiveness condition is met, again the same persistence result is obtained. If the system is Hamiltonian, then the procedure can be indefinitely iterated and no positiveness condition must be required: as a byproduct, the result follows that at least one resonant quasi-periodic solution always exists with no assumption on the perturbation. Such a solution can be interpreted as a (parabolic) lower-dimensional torus.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "One dimensional quasi periodic systems"

1

Raghavan, Lalitha. "Dynamic response localization in one-dimensional periodic systems." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43389.

Повний текст джерела
Анотація:
This thesis contributes a novel receptance coupling technique to analyse dynamic response localization induced by bandgap mechanisms in advanced periodic light weight material and structural systems. One-dimensional structural systems are used to illustrate the technique with experiments. Localization induced by disorder and nonlinearity is investigated using numerical simulations. Insights on bandgap localization mechanisms offered by the receptance technique can be used to design periodic composite materials such as Phononic Crystals and metamaterials, and periodic structures with enhanced vibroacoustic performance characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cunningham, John. "Acoustoelectric charge transport in quasi-one-dimensional systems." Thesis, University of Cambridge, 2000. https://www.repository.cam.ac.uk/handle/1810/261853.

Повний текст джерела
Анотація:
The study of electron transport in mesoscopic systems has recently turned to the observation of time dependent single electron e ects, where the electron transport is frequency locked to an external potential. Such devices are expected to form the basis of a standard of electric current, long sought after by the metrological community, to provide a representation of the ampere and to be compared with existing quantum standards of the volt and ohm. This thesis details new experimental investigations of one such system. The piezoelectric interaction between an acoustic wave travelling on the surface of a GaAs heterostructure and electrons in a quasi-1D sys- tem de ned therein generates a current which, under certain conditions, can be quantized in units of ef where e is the electron charge and f the surface acoustic wave frequency. The general conditions under which this 'single electron acoustoelectric effect' is observable are studied, and experimental results presented which demonstrate that the e ffect represents a possible route towards a current standard. The precision of the e ffect is assessed in a variety of experimental situations and device geometries. Several ways to enhance the precision of the eff ect are presented. Firstly a weak counterpropagating SAW beam produces a dynamic tuning of the SAW potential. Observations of a quantized acoustoelectric current are then presented in novel etched-channel SAW devices which aff ord a more precise current by allowing better control over the channel geometry. The presently attainable precision of the technique is at the level of 10's of ppm. Detailed measurements are presented of the single electron acoustoelectric e ffect in a magnetic fi eld applied perpendicular to the two-dimensional electron gas. Commensurability oscillations are observed for the interval of current between acoustoelectric current plateaux when the cyclotron diameter and SAW wavelength are comparable. The oscillations show a particular phase dependence which results in an oscillating plateau slope as a function of applied magnetic fi eld. Results are also presented from measurements of the interaction between a surface acoustic wave and open 1D systems. Here the quantized current is not observed, but instead the behaviour of the measured current depends sensitively on the geometry of the channel. Two situations are possible in this regime. Interaction between the SAW and slow electrons in the uppermost 1D subband within the channel produces an oscillatory acoustoelectric current as a function of subband occupancy. These oscillations are observed in all subbands of clean constrictions for the first time. Secondly, interaction between the SAW and electrons in the device leads causes a contribution to the acoustoelectric current which is proportional to the quantized channel conductance, this contribution dominating transport in certain device geometries.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Benthien, Holger. "Dynamical properties of quasi one-dimensional correlated electron systems." [S.l. : s.n.], 2005. http://archiv.ub.uni-marburg.de/diss/z2005/0098/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zúñiga, Vukusich Jaime Miguel. "Conductance in Iiffusive Quasi-One-Dimensional Periodic Waveguides: A Semiclassical and Random Matrix Study." Tesis, Universidad de Chile, 2011. http://repositorio.uchile.cl/handle/2250/102515.

Повний текст джерела
Анотація:
En esta tesis estudiamos propiedades de transporte cuántico en guías de onda finitas periódicas quasi-unidimensionales, cuya dinámica clásica asociada es difusiva. Nos enfocamos en el límite semiclásico el cual nos permite emplear un modelo de Teoria de Matrices Aleatorias (TMA) para describir el sistema. El requisito de difusión normal de la dinámica clásica restringe la configuración de la celda unitaria a tener horizonte finito, y significa que los ensembles apropi- ados de TMA son los ensembles circulares de Dyson. El sistema que consideramos corresponde a una configuración de scattering, compuesto de una cadena finita de L celdas unitarias (clási- camente caóticas y con horizonte finito) la cual esta conectada a dos guías planas semi-infinitas en sus extremos. Las partículas dentro de esta cavidad son libres y solo interactúan con los bordes a través de choques elásticos; esto significa que las ondas son descritas por una ecuación de Helmholtz con condiciones de borde tipo Dirichlet en las paredes la guía. Por lo tanto, no hay desorden en el sistema y el scattering es debido a la geometría de la cadena la cual es estática. El análogo al ensemble de desorden es un ensemble de energía, definido sobre un intervalo clási- camente pequeño pero cuyo ancho es varias veces un espaciamiento de niveles promedio (mean level spacing). El número de canales propagativos en las guías planas es N y el límite semiclásico se alcanza cuando N → ∞. Un número importante para las propiedades de transporte en cadenas periódicas es el número de modos de Bloch NB del sistema extendido infinito asociado. Previamente, ha sido conjeturado que en sistemas fuertemente difusivos en el límite semiclásico ∼√(N D), donde D es la constante de difusión clásica. Hemos comprobado numéricamente este resultado en una guía de ondas con forma de coseno obteniendo excelente concordancia. Luego, mediante la aproximación de Machta-Zwanzig para D obtuvimos la expresión analítica N/π, la cual concuerda perfectamente con los ensembles circulares. Por otro lado, hemos estudiado la conductancia (adimensional) de Landauer g como función de L y N en la guía coseno y mediante nuestro modelo RMT para cadenas periódicas. Hemos encontrado que muestra dos regímenes. Primero, para cadenas de largo LN la dinámica es difusiva tal como en un cable desordenado en el régimen metálico, donde se observa el escalamiento ohmnico típico con = N/(L+1). En este régimen, la distribución de conductancias es Gaussiana con una varianza pequeña (tal que <1/g> ≈ 1/) pero que crece linealmente con L. Luego, para sistemas más largos con L ≫ N , su naturaleza periódica se hace relevante y la conductancia alcanza un valor asintótico constante ∼ NB. En este caso, la distribución de la conductancia pierde su forma Gaussiana convirtiéndose en una distribución multimodal debido a los valores discretos (enteros) que NB puede tomar. La varianza alcanza un valor constante ∼√N cuando L → ∞. Comparando la conductancia para los ensembles circulares unitario y ortogonal, mostramos que un efecto de localización débil está presente en ambos regímenes. Finalmente, estudiamos la parte no propagativa de la conductancia en el régimen Bloch-balístico, la cual está dominada por el modo con la longitud de decaimiento mayor ℓ que va a cero como gnp = 4 e−2L/ℓ cuando L → ∞. Usando nuestro modelo de TMA obtuvimos que bajo un escalamiento apropiado la pdf P (ℓ) converge, cuando N → ∞, a una distribución límite con cola algebraica P(ℓ) ∼ℓ−3 para ℓ → ∞; esto nos permitió conjeturar el decaimiento ∼ L−2, el cual fue observado en nuestra guía de ondas coseno.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gannon, Liam A. "Charge-density-waves in quasi-one and quasi-two-dimensional metallic crystal systems." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:f244a8cb-6011-4202-b1ff-8f427cda3559.

Повний текст джерела
Анотація:
In this thesis I present experimental measurements on a number of different quasi-one and quasi-two-dimensional metallic crystal systems susceptible to density-wave formation. I outline the discovery of a density-wave superstructure found via X-ray diffraction measurements in the quasi-two-dimensional Na2Ti2As2O and Na2Ti2Sb2O compounds. Na2Ti2Sb2O and Na2Ti2As2O are members of the Ti-based oxy-pnictides a group of compounds which exhibit complex phase diagrams and share structural similarities with the high temperature superconductors. Temperature-dependent X-ray diffraction measurements confirmed the superstructure in both materials to be concomitant with transitions seen in resistivity and magnetic data. The observation of the superstructure combined with results from other experimental techniques demonstrated the transition to be a charge-density-wave. I also present results on a series of intercalated charge-density-wave compounds NixZrTe3. NixZrTe3 was measured using X-ray diffraction and ARPES to investigate the effects of chemical pressure on charge-density-wave formation. The transition temperature for density-wave formation in this series of compounds had been previously shown to vary as a result of Ni-content. X-ray diffraction measurements on the series revealed no changes in the wavevector of the associated superstructure modulation across the series. However ARPES measurements on NixZrTe3 showed subtle changes in the binding energy of the one-dimensional band associated with the charge-density-wave thought to be a result of the Ni-intercalation. Through a combination of XPS, EDX and ARPES measurements the Ni-content in these crystals was deduced to be much lower than growth parameters suggested. Finally I describe the construction and testing of a straining device designed specifically for use with X-ray synchrotron type measurements. The straining device was successfully tested at the I16 beamline at the Diamond Light Source and shown to induce dynamic strain in a test sample of M2Mo6Se6. Further testing at the ID28 beamline at the ESRF revealed that the strain induced in a M2Mo6Se6 was significant and resulted in a change in the lattice dynamics of the material.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Carr, Sam T. "Non-perturbative solutions to quasi-one-dimensional strongly correlated systems." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Megann, A. P. "The many-body physics of some quasi-one-dimensional magnetic systems." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kreouzis, Theodore. "Measurement of photocarrier mobility and range in quasi one dimensional columnar molecular systems." Thesis, Queen Mary, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lu, Danyong. "Theoretical study of dynamic intensity fluctuations in mesoscopic 1D and Quasi-1D systems /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202009%20LU.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lan, Yueheng. "Dynamical systems approach to one-dimensional spatiotemporal chaos -- A cyclist's view." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-10282004-154606/unrestricted/lan%5Fyueheng%5F200412%5Fphd.pdf.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Physics, Georgia Institute of Technology, 2005.
Jean Bellissard, Committee Member ; Turgay Uzer, Committee Member ; Roman Grigoriev, Committee Member ; Konstantin Mischaikow, Committee Member ; Predrag Cvitanovic, Committee Chair. Vita. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "One dimensional quasi periodic systems"

1

Sen, Mihir. New Theory on High Current Superconductivity at Room Temperature and Above in Quasi one Dimensional Systems. Academic Publishers, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Monteith, Andrew Ross. Magnetic excitations in the quasi one-dimensional singlet groundstate systems CsFeBr3 and CsFeCl3 under hydrostatic pressure: A neutron scattering study. 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yamamoto, Takahiro, Kazuyuki Watanabe, and Satoshi Watanabe. Thermal transport of small systems. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.6.

Повний текст джерела
Анотація:
This article focuses on the phonon transport or thermal transport of small systems, including quasi-one-dimensional systems such as carbon nanotubes. The Fourier law well describes the thermal transport phenomena in normal bulk materials. However, it is no longer valid when the sample dimension reduces down to below the mean-free path of phonons. In such a small system, the phonons propagate coherently without interference with other phonons. The article first considers the Boltzmann–Peierls formula of diffusive phonon transport before discussing coherent phonon transport, with emphasis on the Landauer formulation of phonon transport, ballistic phonon transport and quantized thermal conductance, numerical calculation of the phonon-transmission function, and length dependence of the thermal conductance.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeitlin, Vladimir. Rotating Shallow-Water Models as Quasilinear Hyperbolic Systems, and Related Numerical Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0007.

Повний текст джерела
Анотація:
The chapter contains the mathematical background necessary to understand the properties of RSW models and numerical methods for their simulations. Mathematics of RSW model is presented by using their one-dimensional reductions, which are necessarily’one-and-a-half’ dimensional, due to rotation and include velocity in the second direction. Basic notions of quasi-linear hyperbolic systems are recalled. The notions of weak solutions, wave breaking, and shock formation are introduced and explained on the example of simple-wave equation. Lagrangian description of RSW is used to demonstrate that rotation does not prevent wave-breaking. Hydraulic theory and Rankine–Hugoniot jump conditions are formulated for RSW models. In the two-layer case it is shown that the system loses hyperbolicity in the presence of shear instability. Ideas of construction of well-balanced (i.e. maintaining equilibria) shock-resolving finite-volume numerical methods are explained and these methods are briefly presented, with illustrations on nonlinear evolution of equatorial waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bertel, E., and A. Menzel. Nanostructured surfaces: Dimensionally constrained electrons and correlation. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.11.

Повний текст джерела
Анотація:
This article examines dimensionally constrained electrons and electronic correlation in nanostructured surfaces. Correlation effects play an important role in spatial confinement of electrons by nanostructures. The effect of correlation will become increasingly dominant as the dimensionality of the electron wavefunction is reduced. This article focuses on quasi-one-dimensional (quasi-1D) confinement, i.e. more or less strongly coupled one-dimensional nanostructures, with occasional reference to 2D and 0D systems. It first explains how correlated systems exhibit a variety of electronically driven phase transitions, and especially the phases occurring in the generic phase diagram of correlated materials. It then describes electron–electron and electron–phonon interactions in low-dimensional systems and the phase diagram of real quasi-1D systems. Two case studies are considered: metal chains on silicon surfaces and quasi-1D structures on metallic surfaces. The article shows that spontaneous symmetry breaking occurs for many quasi-1D systems on both semiconductor and metal surfaces at low temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

van Houselt, Arie, and Harold J. W. Zandvliet. Self-organizing atom chains. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.9.

Повний текст джерела
Анотація:
This article examines the intriguing physical properties of nanowires, with particular emphasis on self-organizing atom chains. It begins with an overview of the one-dimensional free electron model and some interesting phenomena of one-dimensional electron systems. It derives an expression for the 1D density of states, which exhibits a singularity at the bottom of the band and extends the free-electron model, taking into consideration a weak periodic potential that is induced by the lattice. It also describes the electrostatic interactions between the electrons and goes on to discuss two interesting features of 1D systems: the quantization of conductance and Peierls instability. Finally, the article presents the experimental results of a nearly ideal one-dimensional system, namely self-organizing platinum atom chains on a Ge(001) surface, focusing on their formation, quantum confinement between the Pt chains and the occurrence of a Peierls transition within the chains.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "One dimensional quasi periodic systems"

1

Eliasson, L. H. "On The Discrete One-Dimensional Quasi-Periodic Schrödinger Equation and Other Smooth Quasi-Periodic Skew Products." In Hamiltonian Systems with Three or More Degrees of Freedom, 55–61. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4673-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eliasson, L. H. "One-Dimensional Quasi-Periodic Schrödinger Operators — Dynamical Systems and Spectral Theory." In European Congress of Mathematics, 178–90. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8974-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ishiguro, Takehiko, Kunihiko Yamaji, and Gunzi Saito. "TMTSF Salts: Quasi One-Dimensional Systems." In Springer Series in Solid-State Sciences, 45–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58262-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ishiguro, Takehiko, and Kunihiko Yamaji. "TMTSF Salts: Quasi One-Dimensional Systems." In Springer Series in Solid-State Sciences, 35–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97190-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maki, Kazumi. "Solitons in One-Dimensional Systems." In Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, 125–93. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-6923-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bloch, Ingram. "Finite One-Dimensional Periodic Systems, Difference Equations." In The Physics of Oscillations and Waves, 197–215. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0050-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bloch, Ingram. "Infinite One-Dimensional Periodic Systems—Characteristic Impedance." In The Physics of Oscillations and Waves, 216–29. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0050-0_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grebert, B., and J. C. Guillot. "Gaps of One-Dimensional Periodic AKNS Systems." In Inverse Problems and Theoretical Imaging, 519–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75298-8_65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barišić, Slaven. "Coulomb Forces in Quasi One-Dimensional CDW Systems." In Low-Dimensional Conductors and Superconductors, 395–408. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-3611-0_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Davydov, Alexander S. "Solitons and Excitons in Quasi-One-Dimensional Systems." In Dynamical Problems in Soliton Systems, 218–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02449-2_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "One dimensional quasi periodic systems"

1

Bibo, Amin, and Mohammed F. Daqaq. "Energy Harvesting Under Combined Aerodynamic and Base Excitations." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7908.

Повний текст джерела
Анотація:
This paper investigates the transduction of a piezoaeroelastic energy harvester under combined base and aerodynamic loadings. The harvester consists of a typical rigid airfoil supported by hardening flexural and torsional springs. The airfoil is placed in an incompressible air flow and subjected to a harmonic base excitation in the plunge direction. Considering a nonlinear quasi-steady aerodynamic model, the response behavior and electric output of the harvester are analyzed near the flutter instability. A center manifold reduction is implemented to reduce the original five-dimensional system into one nonlinear first-order ordinary differential equation. Subsequently, the normal form of the reduced system is derived to study slow modulation of the voltage amplitude and phase. Several case studies are presented indicating a considerable improvement in the output voltage of the harvester under the combined loading even when the air speed is below the flutter velocity, i.e., even when the harvester cannot maintain steady-state periodic oscillations in the absence of the harmonic base excitation. It is also shown that, when the base-excitation amplitude is sufficiently large and its frequency is close to the frequency of the self-sustained limit-cycle oscillations emanating from the flutter instability, the periodic solution resulting from the base excitation entrains the self-sustained oscillations yielding a periodic output voltage. However, when the excitation frequency is far from the limit-cycle frequency, or the amplitude of base excitation is small, the voltage is two-period quasiperiodic.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ersahin, C., I. B. Celik, O. C. Elci, I. Yavuz, J. Li, and G. Hu. "A Simple Model for Fluid Flow and Particle Motion Inside the Human Larynx." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56137.

Повний текст джерела
Анотація:
This study aims to develop a simple and quick, but sufficiently accurate solution method for calculating the air flow and tracking the particles in a complex tubular system, where the flow changes its magnitude and direction in a periodic manner. The flow field is assumed to be quasi-two-dimensional and a pressure-correction method is employed to calculate the spetio-temporal variation of the air velocity inside the larynx. Then, the calculated one-dimensional flow distribution is used to reconstruct a two-dimensional flow field is constructed based on the average velocity along the axial direction. The system geometry is taken as close as possible to the actual larynx for an average person with an average glottis opening. For the current study the walls of the larynx is approximated as rigid walls, but different ways to account for compliant walls are proposed within the context of the one-dimensional mode. The 1-D transient model is validated against a two-dimensional model using a verified commercial code. Particles are introduced into the system and tracked during every time fraction of the respiratory cycle. Then, the histograms of particles that come into contact with the larynx are calculated, and regions with a higher probability for particle deposition are identified.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stafstrom, S. "Localization in quasi-one-dimensional systems." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.834641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gu, Zu-Han, and Anting Wang. "Nonstandard refraction of light from one-dimensional dielectric quasi-periodic surfaces." In SPIE NanoScience + Engineering, edited by Michael T. Postek and John A. Allgair. SPIE, 2009. http://dx.doi.org/10.1117/12.824626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Yalu, Jiaqi Luo, and Feng Liu. "An Adaptive Harmonic Method for Unsteady Quasi-One-Dimensional Periodic Flow." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76144.

Повний текст джерела
Анотація:
A uniform formulation of linear harmonic method, nonlinear harmonic method and harmonic balance method, referred to as the uniform harmonic method, is first proposed for the quasi-one-dimensional Euler equations; and a modified adaptive technique is employed, by which the harmonic contents at each cell can be automatically augmented or diminished to efficiently capture the local flow details. Then the unsteady flows in a convergent-divergent nozzle are computed and analyzed for a test case with an oscillating shock wave in it. The harmonic contents, computational time and error in pressure are presented and compared for different harmonic interaction options, segment widths and thresholds, from which the adaption setups with excellent computational performance and high-level accuracy are determined. Finally, the adaptive harmonic method is extended to the multiple-perturbation case, which is verified by an example with pressure perturbations of two different fundamental frequencies. Compared to the non-adaptive harmonic balance method, the adaptive harmonic method produces accurate enough solutions with a 75.4% reduction in computational time and a 71.8% save in memory consumption for the single-perturbation case, while the drop rates are 42.0% and 62.8% respectively for the multiple-perturbation case.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Modest, Michael F. "Effects of Multiple Reflections on Hole Formation During Short-Pulsed Laser Drilling." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72399.

Повний текст джерела
Анотація:
Beam guiding effects during laser drilling due to multiple specular reflections inside the hole are analyzed for the case of very short laser pulses (ns range). Specular reflections are valid for materials that retain a smooth surface during laser evaporation (small optical roughness compared to the laser wavelength). The problem is assumed to be 2D axisymmetric (unpolarized laser), with the hole geometry denned by nodal values connected through a cubic spline. The net radiative flux onto a surface node is determined through ray tracing methods. The resulting absorbed laser flux is combined with a simple quasi-one-dimensional conduction model (to assess the minor conduction losses) and an Arrhenius evaporation rate model, to predict hole development as a function of time through iteration. To stabilize this highly nonlinear and thus unstable problem (in numerical analysis as well as in experiments) the laser beam is diffused a small amount from the specular direction (to also account for the limitation that no beam can be focused down to a point), and by periodic slight smoothing of the irradiation levels. Results show that drilling rates are increased dramatically due to beam trapping for highly reflective materials, resulting in a more pointed hole profile.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guzma´n, Amador M., and Fernando A. Villar. "Flow Bifurcations and Heat Transfer Enhancement in Asymmetric Grooved Channels." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72314.

Повний текст джерела
Анотація:
Numerical investigations of the flow bifurcations, transition scenario and heat transfer enhancement in asymmetric grooved channels are performed by direct numerical simulations of the mass, momentum and energy equations. The governing equations are solved for laminar and time-dependent transitional flow regimes by the spectral element method in a periodic computational domain with appropriated boundary conditions. Numerical results show a flow transition scenario with two Hopf bifurcations B1 and B2, occurring in critical Reynolds numbers Rec1 y Rec2, respectively. Fundamental frequencies ω1 and ω2, and super harmonic combinations of both develop as the Reynolds number increases from a laminar to higher transitional flow regime. Numerical calculations demonstrate that the time-average mean Nusselt number (the non-dimensional heat transfer rate), increases significantly as the flow passes from a laminar to a periodic—and then to a quasi-periodic flow regime. This increase is accompanied by a reasonable increase in both the friction factor and the pumping power. The obtained behavior is comparable to other geometries and configurations as well as to previously reported numerical results for the studied geometry. This numerical investigation shows a transition scenario at the onset of turbulence, similar to the Ruelle-Takens-Newhouse scenario, which has not been found or reported by other researchers using this geometry. The numerical simulation results also show the existence of a bifurcation scenario that develops a path-dependent flow and heat transport behavior. In the vicinity of the first Hopf flow bifurcation (and consequently, the critical Reynolds number Rec1), the resulting stable time periodic flow depends on both the initial flow conditions and the way in which the incremental process to higher flow regimes is carried out.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Reichhardt, C., D. McDermott, and C. J. Olson Reichhardt. "Ordering of colloids with competing interactions on quasi-one-dimensional periodic substrates." In SPIE NanoScience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2014. http://dx.doi.org/10.1117/12.2063487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Allodi, G., and R. Coisson. "Coupled waves in one-dimensional quasi-periodic structures, a Scilab toolbox project." In 2011 IEEE International Workshop on Open-source Software for Scientific Computation (OSSC). IEEE, 2011. http://dx.doi.org/10.1109/ossc.2011.6184688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gu, Zu-Han, and Anting Wang. "Nonstandard refraction of light from one- and two-dimensional dielectric quasi-periodic surfaces." In SPIE Optical Engineering + Applications, edited by Zu-Han Gu and Leonard M. Hanssen. SPIE, 2010. http://dx.doi.org/10.1117/12.859143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "One dimensional quasi periodic systems"

1

Maidanik, G., and J. Dickey. Localization and Delocalization in Periodic One-Dimensional Dynamic Systems. Fort Belvoir, VA: Defense Technical Information Center, December 1989. http://dx.doi.org/10.21236/ada217939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії