Добірка наукової літератури з теми "Onde surface gravite"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Onde surface gravite".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Onde surface gravite"
BRONNIKOV, KIRILL A., and ALEXEI A. STAROBINSKY. "ONCE AGAIN ON THIN-SHELL WORMHOLES IN SCALAR–TENSOR GRAVITY." Modern Physics Letters A 24, no. 20 (June 28, 2009): 1559–64. http://dx.doi.org/10.1142/s0217732309030928.
Повний текст джерелаMORDANE, Soumia, Kamal L. MAROIHI, Abdellatif ORBI, and Mohamed CHAGDALI. "Une formulation parabolique pour la propagation en profondeur finie des ondes de gravité en surface." Oceanologica Acta 24, no. 3 (May 2001): 287–94. http://dx.doi.org/10.1016/s0399-1784(01)01147-1.
Повний текст джерелаLonguet-Higgins, M. S. "The propagation of short surface waves on longer gravity waves." Journal of Fluid Mechanics 177 (April 1987): 293–306. http://dx.doi.org/10.1017/s002211208700096x.
Повний текст джерелаBechtel, S. E. "The Oscillation of Slender Elliptical Inviscid and Newtonian Jets: Effects of Surface Tension, Inertia, Viscosity, and Gravity." Journal of Applied Mechanics 56, no. 4 (December 1, 1989): 968–74. http://dx.doi.org/10.1115/1.3176198.
Повний текст джерелаBenilov, E. S. "Oblique liquid curtains with a large Froude number." Journal of Fluid Mechanics 861 (December 19, 2018): 328–48. http://dx.doi.org/10.1017/jfm.2018.925.
Повний текст джерелаMouyen, Maxime, Philippe Steer, Kuo-Jen Chang, Nicolas Le Moigne, Cheinway Hwang, Wen-Chi Hsieh, Louise Jeandet, et al. "Quantifying sediment mass redistribution from joint time-lapse gravimetry and photogrammetry surveys." Earth Surface Dynamics 8, no. 2 (June 22, 2020): 555–77. http://dx.doi.org/10.5194/esurf-8-555-2020.
Повний текст джерелаKonoplya, R. A., and A. Zhidenko. "How general is the strong cosmic censorship bound for quasinormal modes?" Journal of Cosmology and Astroparticle Physics 2022, no. 11 (November 1, 2022): 028. http://dx.doi.org/10.1088/1475-7516/2022/11/028.
Повний текст джерелаGarstang, Michael, Steven Greco, George D. Emmitt, Tricia A. Miller, and Michael Lanzone. "An Instrumented Golden Eagle’s (Aquila chrysaetos) Long-Distance Flight Behavior." Animals 12, no. 11 (June 6, 2022): 1470. http://dx.doi.org/10.3390/ani12111470.
Повний текст джерелаWelker, William V., and Donald L. Peterson. "A Surface-Roller Herbicide Applicator for Weed Control in Turf." Weed Technology 3, no. 3 (September 1989): 472–74. http://dx.doi.org/10.1017/s0890037x00032590.
Повний текст джерелаTJAN, K. K., and W. R. C. PHILLIPS. "On impulsively generated inviscid axisymmetric surface jets, waves and drops." Journal of Fluid Mechanics 576 (March 28, 2007): 377–403. http://dx.doi.org/10.1017/s0022112007004648.
Повний текст джерелаДисертації з теми "Onde surface gravite"
Guibourg, Sandrine. "MModélisations numérique et expérimentale des houles bidimensionnelles en zone cotière." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10160.
Повний текст джерелаChapalain, Georges. "Étude hydrodynamique et sédimentaire des environnements littoraux dominés par la houle." Université Joseph Fourier (Grenoble ; 1971-2015), 1988. http://www.theses.fr/1988GRE10121.
Повний текст джерелаBarros, Ricardo. "Gravity waves in two-layer flows with free surface." Aix-Marseille 3, 2007. http://www.theses.fr/2007AIX30080.
Повний текст джерелаIn this work we study the wave propagation in two-layer flows with free surface. Two distinct classes of models are contemplated. First, we consider the "two-layer" version of the shallow water equations (also known by Saint-Venant's equations). This model is strictly hyperbolic for small relative velocities. It would be natural to consider this model as suitable for the description of hydraulic jumps. However, like most of models describing multi-velocity flows, the system is not presented in conservative form. We present a survey on the number of conservation laws available for the multi-dimensional case that seems to imply that the system is truly nonconservative. Therefore, the impossibility of presenting a complete set of Rankine-Hugoniot conditions enabling the characterization of weak solutions in the classical way. Then, we obtain a dispersive model suited to the description of large amplitude waves propagating in the same physical system. The model is a "two-layer" generalization of the Green-Naghdi model and can be derived by applying Hamilton's principle to a Lagrangian that results from the insertion of approximations directly into the Lagrangian for the full waterwave problem. As a consequence, the variational structure of the original problem and the corresponding symmetry properties are preserved. In addition, it is a fully nonlinear model and deals with rotational flows. As in the case of the full problem, the present model captures the resonance between short waves and long waves. In this framework it is shown, by using numerical computations, the existence of homoclinic trajectories embedded into the continuous spectrum. These correspond to true solitary waves having the same velocities at infinity in each layer. Their study reduces to the analysis of a Hamiltonian system with two degrees of freedom. The traveling-wave solutions depend on three parameters : the density ratio, the depth ratio and the Froude number based on the bottom layer. Two wave regimes, characterized by the elevation or depression of the interface between the layers are presented. A critical depth ratio separates these two regimes and it will be shown how it relates to a change of the structure of the potential for the Hamiltonian system. The analysis of the number and nature of critical points turned out to be decisive in this work. It was found that the number of critical points can be four or two, depending on the value of the Froude number (for fixed density and depth ratios). For sets of parameters corresponding to oceanic conditions we have perceived the existence of true solitary waves and their broadening whenever the wave speed increases towards a limit value. Finally, other sets of parameters are considered for which multi-humped solitons exist, highlighting the richness and complexity of the system considered
Ioulalen, Mansour. "Etude de la stabilité linéaire d'ondes de gravité progressives et tridimensionnelles en profondeur infinie." Aix-Marseille 2, 1990. http://www.theses.fr/1990AIX22065.
Повний текст джерелаAubourg, Quentin. "Étude expérimentale de la turbulence d’ondes à la surface d’un fluide. La théorie de la turbulence faible à l’épreuve de la réalité pour les ondes de capillarité et gravité." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI061/document.
Повний текст джерелаThe wave turbulence provides a statistical description of the interactions of a large set of weakly non-linear waves. Introduced in the 1960s by the works of Zakharov and Hasselmann, this theory often fails against experiments, particularly for gravity waves and at the crossover for capillary-gravity waves. The objective of this PhD is to study experimentally these two regimes by looking directly at the resonant interactions that are the heart of the weak turbulence theory. The first experiment focuses on the capillary-gravity regime. An energy cascade composed of weakly linear waves is observed in agreement with the phenomenology of the theory. The use of higher order statistical tools shows that it is essentially 3-waves collinear interaction that govern the cascade. The second experiment explores the pure gravity regime thanks to the large dimensions of the Coriolis platform. The full energy spectrum shows the systematic presence of the harmonic branch, although it remains small compared to the linear component. The correlations indicate the presence of strong 3-waves interactions between the linear branch and the harmonics branches. No 4-waves interaction as assumed by the theory is observed. The last section reports the results from an experiment on internal waves and from in situ data of the Black Sea made available by F. Ardhuin. These two experiments confirm the results of the previous section and raise the question of the importance of the 3-wave interaction with the harmonic branch for generating the energy cascade in the gravity wave regime…
Peureux, Charles. "Observation et modélisation des propriétés directionnelles des ondes de gravité courtes." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0091/document.
Повний текст джерелаShort surface gravity waves are ubiquitous at the ocean surface, with lengths from a few tens of meters to a meter typically.Knowing their propagation directions at sea is important in several respects, especially for the understanding of sea-state dynamics, airsea interactions and particles surface drift.Their directional distributions are here investigated in the light of the recent progress made in instrumentation techniques. The analysis of ocean bottom seismo-acoustic noise records allows for the extraction of a quasi-universal behavior which indirectly depends on this distribution through the socalled overlap integral. It is coherent with direct observations of the wave field obtained from tri-dimensional reconstructions of the ocean surface elevation field. While the propagation direction of long waves aligns with the wind direction, short waves progressively detach from it towards small scales (bimodality).Comparing those measurements with the predictions of a spectral numerical wave model, based on WAVEWATCH®III environment, allows to realize that they provide qualitatively correct but quantitatively incorrect predictions. One of the possibilities here explored to correct for it, is by accounting for the sources of energy at ±90° to the wind direction, which could be associated with the breaking of long waves. This source term on its own does not explain the shapes of the observed directional distributions. Other mechanisms could come into play that future investigations will help clarify
Euvé, Léo-Paul. "Interactions ondes-courant-obstacle : application à la physique des trous noirs." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2280/document.
Повний текст джерелаThe aim of the PhD is the observation the Hawking radiation in the laboratory, this astounding prediction of the English astrophysicist Stephen Hawking made in 1974: black holes are not black. In other words, they do not absorb anything within reach but emit a radiation. In addition to the complications of the fact that these celestial objects are thousands of light years away, this radiation is so weak that it would be like trying to hear a whisper in a rock concert. But William Unruh, in 1981, proposed a solution: to use hydrodynamic systems which have the same mathematical equations as in astrophysics. More precisely, in our case, we use the correspondence between the propagation of light in the vicinity of a black hole and surface waves propagation on a inhomogeneous countercurrent (due to the presence of a submerged obstacle). For this, a thorough understanding of the surface waves physics is necessary (variable bathymetry, vorticity, non-linearities ...). On the technical side, a free surface measurement method has been developed and optimized
Artru, Juliette. "Observations au sol ou par satellite et modélisation des signaux ionosphériques post-sismiques." Paris, Institut de physique du globe, 2001. http://www.theses.fr/2001GLOB0006.
Повний текст джерелаFochesato, Christophe. "Modèles numériques pour les vagues et les ondes internes." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2004. http://tel.archives-ouvertes.fr/tel-00132969.
Повний текст джерелаNguyen, Huu Ha. "Analyse de la surface libre dans un canal par une méthode optique : application à l'impact des vagues sur une structure." Le Havre, 2008. http://www.theses.fr/2008LEHA0004.
Повний текст джерелаThis PhD study aims to analyze the free surface within a wave channel by using a new optical measurement. This process uses a video and a laser induced fluorescence to visualize the water movement within a wave channel equipped with glass walls. The good contrast between the water and the air obtained on the captured images allows to detect accurately the free surface. A pixel range can give one punctual evolution of the free surface like a traditional punctual measurement of the free surface (for example: resistive probe). So the space resolution of the free surface can be obtained with a very high resolution. This optical measurement opens an in-depth investigation on the decomposition of incident and reflected harmonic waves using four wave gauges proposed by Lin et al. (2004). On the one side, it confirms the good pertinence of this method with the fundamental waves. On the other side, some difficulties appear about the estimation of higher harmonic waves. The same conclusions are found by comparing the four fixed gauges method of Lin et al. (2004) with the moving probes method of Brossard et al. (2000). This new measurement method allows to characterize the different behaviours of the free surface nearby a sloping marine structure according to the structure inclinations. For this purpose, various parameters associated with the extreme forms of the free surface are analyzed in relation to the structure inclination
Книги з теми "Onde surface gravite"
Bridges, John C. Evolution of the Martian Crust. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190647926.013.18.
Повний текст джерелаЧастини книг з теми "Onde surface gravite"
Mandal, Gautam. "Phase Transitions in One Matrix Models." In Random Surfaces and Quantum Gravity, 151–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3772-4_10.
Повний текст джерелаAmbjørn, J. "Random Surfaces in Dimensions Larger than One." In Random Surfaces and Quantum Gravity, 327–36. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3772-4_21.
Повний текст джерелаBoulatov, Dmitri. "Multipoint Correlation Functions in One-Dimensional String Theory." In Random Surfaces and Quantum Gravity, 237–41. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3772-4_15.
Повний текст джерелаWadia, Spenta R. "Excitations and Interactions in a One Dimensional String Theory." In Random Surfaces and Quantum Gravity, 317–26. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3772-4_20.
Повний текст джерелаKazakov, Vladimir. "Bosonic Strings and String Field Theories in One-Dimensional Target Space." In Random Surfaces and Quantum Gravity, 269–306. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3772-4_18.
Повний текст джерелаBatsukh, Khulan. "Cold Atom Interferometry in Satellite Geodesy for Sustainable Environmental Management." In Civil and Environmental Engineering for the Sustainable Development Goals, 43–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99593-5_4.
Повний текст джерелаNaqi, Mohammad, and Aimen Amer. "Structures and Tectonics of Kuwait." In The Geology of Kuwait, 99–115. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16727-0_5.
Повний текст джерелаBob, Corneliu, Sorin Dan, Catalin Badea, Aurelian Gruin, and Liana Iures. "Strengthening of the Frame Structure at the Timisoreana Brewery, Romania." In Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of Structures, 57–80. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2010. http://dx.doi.org/10.2749/sed012.057.
Повний текст джерелаSneeuw, Nico, Muriel Bergé-Nguyen, and Jean-François Crétaux. "Physical Heights of Inland Lakes." In International Association of Geodesy Symposia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/1345_2023_192.
Повний текст джерелаAdam, John A. "Scattering of Surface Gravity Waves by Islands, Reefs, and Barriers." In Rays, Waves, and Scattering. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691148373.003.0017.
Повний текст джерелаТези доповідей конференцій з теми "Onde surface gravite"
Hibiki, Takashi, Tomoji Takamasa, and Mamoru Ishii. "One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes at Microgravity Conditions." In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49037.
Повний текст джерелаChagdali, Mohamed, Soumia Mordane, and KL Maroihi. "Une formulation parabolique des équations de propagation des ondes de gravité en surface." In Journées Nationales Génie Côtier - Génie Civil. Editions Paralia, 2000. http://dx.doi.org/10.5150/jngcgc.2000.005-c.
Повний текст джерелаHori, Kohei, Iwao Hayashi, and Nobuyuki Iwatsuki. "Determination of the Tooth Surface Friction Coefficient of a Pair of Mating Gears Based on the Distribution Along the Tooth Profile Precisely Measured With the Gravity Pendulum Method." In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/ptg-14371.
Повний текст джерелаDíaz-Ojeda, H. R., L. M. González, and F. J. Huera-Huarte. "Fluid Structure Interaction Simulations Involving Free Surface." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77207.
Повний текст джерелаAlfaiz, K., F. Ayyasy, Y. Assyifa, and D. Darisma. "«3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering-Poster Session: Potential Field-107» Identification of Lignite as One of Usable Alternative Energy Using Difference Normalized Burn Ratio (dNBR) Calculated from Landsat-8 Data and Gravity Method in Lam Apeng Village, Aceh Besar District, Aceh Province." In 3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202071107.
Повний текст джерелаKheyfets, Vitaly O., and Sarah L. Kieweg. "Free Surface Coating Flows of Non-Newtonian Gels: 3-D Numerical Simulation of Gravity-Induced Flow." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176696.
Повний текст джерелаWalker, K., A. Posenato Garcia, J. Nunn, and G. Lyman. "CO2 Leak Detection and Conformance Verification Using Borehole Gravity." In SPE Energy Transition Symposium. SPE, 2023. http://dx.doi.org/10.2118/215734-ms.
Повний текст джерелаGuo, Dan, Fu-Lei Chu, and Yong-Yong He. "Vibration Analysis of Rotor With Transverse Surface Cracks." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38041.
Повний текст джерелаAl-Zayani, Alia I., Pramod D. Patil, Abdulaziz S. Al-Qasim, and Sunil L. Kokal. "An Overview of Advanced Subsurface and Surface Measurements for CCUS Project." In Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213510-ms.
Повний текст джерелаLavrenov, I. V., and A. V. Novakov. "Interaction of Water Gravity Waves With Elastic Ice Floes." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28419.
Повний текст джерелаЗвіти організацій з теми "Onde surface gravite"
Hayward, N., and V. Tschirhart. A comparison of 3-D inversion strategies in the investigation of the 3-D density and magnetic susceptibility distribution in the Great Bear Magmatic Zone, Northwest Territories. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331954.
Повний текст джерелаRussell, H. A. J., and S. K. Frey. Canada One Water: integrated groundwater-surface-water-climate modelling for climate change adaptation. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329092.
Повний текст джерелаHarris, L. B., P. Adiban, and E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.
Повний текст джерела