Добірка наукової літератури з теми "Onde gravitationnelles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Onde gravitationnelles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Onde gravitationnelles"
Arnaud, Nicolas. "Les premières détections des ondes gravitationnelles." Reflets de la physique, no. 52 (February 2017): 14–20. http://dx.doi.org/10.1051/refdp/201752014.
Повний текст джерелаMan, Catherine Nary. "Comprendre. La détection des ondes gravitationnelles." Photoniques, no. 89 (November 2017): 40–43. http://dx.doi.org/10.1051/photon/20178940.
Повний текст джерелаRoy, Jean-René. "Compte rendu de Pierre Spagnou : «Le trésor des ondes gravitationnelles»." Revue des questions scientifiques 192, no. 1-2 (January 1, 2021): 248–49. http://dx.doi.org/10.14428/qs.v192i1-2.71563.
Повний текст джерелаAntoine, Jean-Pierre. "Compte rendu de Nathalie Deruelle & Jean-Pierre Lasota : «Les ondes gravitationnelles»." Revue des questions scientifiques 191, no. 1-2 (January 1, 2020): 240–41. http://dx.doi.org/10.14428/qs.v191i1-2.71293.
Повний текст джерелаTheureau, Gilles, Siyuan Chen, and Antoine Petiteau. "Des pulsars pour traquer les ondes gravitationnelles." Pour la Science Août, no. 8 (August 2, 2021): 36–44. http://dx.doi.org/10.3917/pls.526.0036.
Повний текст джерелаBlanchet, Luc. "Les ondes gravitationnelles,cent ans après Einstein." Reflets de la physique, no. 52 (February 2017): 6–12. http://dx.doi.org/10.1051/refdp/201752006.
Повний текст джерелаLamine, B., A. Lambrecht, M. T. Jaekel, and S. Reynaud. "Ondes gravitationnelles reliques et isotropie de l'espace." Journal de Physique IV (Proceedings) 119 (November 2004): 217–18. http://dx.doi.org/10.1051/jp4:2004119064.
Повний текст джерелаBordé, Ch J. "Méthodes optiques de détection des ondes gravitationnelles - Préface." Annales de Physique 10, no. 3 (1985): R1—R2. http://dx.doi.org/10.1051/anphys:019850010030r500.
Повний текст джерелаJouvenet, Morgan. "L’événement et la communauté. L’acmé d’une sociologie de la quête des ondes gravitationnelles." Zilsel N°6, no. 2 (2019): 335. http://dx.doi.org/10.3917/zil.006.0335.
Повний текст джерелаCognard, Ismaël. "Les pulsars radio : 50 ans de découvertes !" Reflets de la physique, no. 59 (September 2018): 26–31. http://dx.doi.org/10.1051/refdp/201859026.
Повний текст джерелаДисертації з теми "Onde gravitationnelles"
Le, Bars Julien. "Etude du bruit quantique dans la détection interférométrique des ondes gravitationnelles." Paris 6, 2010. http://www.theses.fr/2010PA066200.
Повний текст джерелаDrezen, Christine. "Utilisation de caméras CCD pour le contrôle du détecteur d'ondes gravitationnelles VIRGO : élaboration d'une interface VME et analye d'images." Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10147.
Повний текст джерелаLassus, Antoine. "Méthode de détection de sources individuelles d'ondes gravitationnelles par chronométrie d'un réseau de pulsars : application aux données de l'EPTA." Phd thesis, Université d'Orléans, 2013. http://tel.archives-ouvertes.fr/tel-01017215.
Повний текст джерелаGrave, Xavier. "Etude de methodes pour la recherche, avec le detecteur virgo d'ondes gravitationnelles emises par des etoiles a neutrons." Paris 11, 1997. http://www.theses.fr/1997PA112105.
Повний текст джерелаDelva, Pacôme. "Outils pour la gravitation expérimentale et applications aux interféromètres et cavité à ondes de matières." Paris 6, 2007. http://www.theses.fr/2007PA066417.
Повний текст джерелаBacon, Philippe. "Graphes d'ondelettes pour la recherche d'ondes gravitationnelles : application aux binaires excentriques de trous noirs." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC113/document.
Повний текст джерелаIn december 2015 the LIGO detectors have first detected a gravitational wave emitted by a pair of coalescing black holes 1.3 billion years ago. Many more observations have been realised since then and heralded gravitational waves as a new messenger in astronomy. The latest detection is the merge of two neutron stars whose electromagnetic counterpart has been followed up by many observatories around the globe. These direct observations have been made possible by the developpement of advanced data analysis techniques. With them the weak gravitational wave inprint in detectors may be recovered. The realised work during this thesis aims at developping an existing gravitational wave detection method which relies on minimal assumptions of the targeted signal. It more precisely consists in introducing an information on the signal phase depending on the astrophysical context. The first part is dedicated to a presentation of the method. The second one presents the results obtained when applying the method to the search of stellar mass binary black holes in simulated Gaussian noise data. The study is repeated in real instrumental data collected during the first run of LIGO. Finally, the third part presents the method applied in the search for eccentric binary black holes. Their orbit exhibits a deviation from the quasi-circular orbit case considered so far and thus complicates the signal morphology. This third analysis establishes first results with the proposed method in the case of a poorly modeled signal
Ritter, Patxi. "Ondes gravitationnelles et calcul de la force propre pour un astre compact en mouvement autour d'un trou noir super-massif." Thesis, Orléans, 2013. http://www.theses.fr/2013ORLE2038/document.
Повний текст джерелаThis thesis focuses on modelling the gravitational waves and the relativistic motion associated to Extreme Mass Ratio Inspiral (EMRI) systems. These systems consist of a stellar mass compact object gravitationally captured by a super-massive black hole. In black hole perturbation theory, we further develop a numerical method which computes waveforms generated by a point mass particle orbiting a Schwarzschild black hole. The Regge-Wheeler-Zerilli wave equation is solved in time domain. The gauge invariant solution is related to the polarisation modes, the energy and the angular momentum carried by the gravitational waves. In reaction to the energy and the moment lost, the trajectory is modified all along. In the MiSaTaQuWa formalism, we compute the self-force acting upon a point particle which is initially at rest, and then falling into a Schwarzschild black hole. We show how this quantity is defined in the Regge-Wheeler gauge by using the mode-sum regularisation technique. We take into account the self-force effect on the motion of the particle by using an iterative and osculating orbit method conceived herein. We quantify the orbital deviation with respect to the geodesic motion, but also the perturbed wave forms and the associated radiated energy
Pierra, Grégoire. "Cosmologie avec les sirènes sombres et populations de binaires de trous noirs avec les ondes gravitationnelles de LIGO-Virgo-KAGRA." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10162.
Повний текст джерелаGravitational waves constitute a new probe for exploring the Universe and studying cosmic phenomena that were previously inaccessible. This thesis is based on gravitational wave data collected by the LIGO-Virgo-KAGRA scientific collaboration detectors. The first part of this work focuses on cosmology with dark sirens, a method that uses binary black hole mergers to measure cosmological distances and infer the value of the Hubble constant, without requiring an electromagnetic counterpart. It also presents ICAROGW, a hierarchical Bayesian inference code that uses gravitational wave data and models describing the astrophysical properties of black holes, such as their masses, distances, and spins, to estimate the Hubble constant. The second part of this study tests in particular the robustness of the dark siren method for cosmology. It explores the impact of binary black hole population parameterization on the estimation of the Hubble constant, especially when certain astrophysical processes are not modelled. The third part focuses on the search and identification of subpopulations of binary black holes in the universe. It examines how different formation channels can influence the intrinsic characteristics of these compact objects, particularly through po- tential correlations between their mass and spin. The existence of these correlations would be indicative of the presence of subpopulations of black holes, such as hierarchical black holes, resulting from previous mergers. Finally, the manuscript concludes with a study on the use of machine learning methods to improve the quality of the Virgo interferometer data and detect the presence of non-Gaussian noises. This work also explores the potential integration of iDQ results into gravitational wave signal detection algorithms, thereby aiming to strengthen the confidence level in these detections
Lamine, Brahim. "Effets physiques des ondes gravitationnelles : décohérence gravitationnelle des interféromètres et décohérence du mouvement de la Lune." Paris 6, 2004. http://www.theses.fr/2004PA066554.
Повний текст джерелаDelva, Pacôme. "Outils théoriques pour la gravitation expérimentale et applications aux interféromètres et cavités à ondes de matière." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00268764.
Повний текст джерелаl'observation de phénomènes quantiques macroscopiques. Dans cette thèse, nous explorons quelques applications possibles des ondes de matière pour les expériences de gravitation en champ faible. En première partie, nous développons des outils génériques pour la description théorique des expériences en relativité générale. Nous les appliquons dans la seconde partie: nous calculons la sensibilité des interféromètres à ondes de matière à l'effet Lense-Thirring, puis aux ondes gravitationnelles, et nous les comparons aux interféromètres laser. Enfin nous calculons la probabilité de changement d'état d'une cavité à onde de matière en interaction avec une onde gravitationnelle.
Книги з теми "Onde gravitationnelles"
(Editor), I. Ciufolini, V. Gorini (Editor), U. Moschella (Editor), and P. Fre (Editor), eds. Gravitational Waves (Studies in High Energy Physics, Cosmology and Gravitation). Taylor & Francis, 2001.
Знайти повний текст джерелаGravitational Waves: A History of Discovery. Taylor & Francis Group, 2019.
Знайти повний текст джерелаGrote, Hartmut. Gravitational Waves: A History of Discovery. Taylor & Francis Group, 2019.
Знайти повний текст джерелаGrote, Hartmut. Gravitational Waves: A History of Discovery. Taylor & Francis Group, 2019.
Знайти повний текст джерелаGrote, Hartmut. Gravitational Waves: A History of Discovery. Taylor & Francis Group, 2019.
Знайти повний текст джерелаGrote, Hartmut. Gravitational Waves: A History of Discovery. Taylor & Francis Group, 2019.
Знайти повний текст джерелаNanohertz Gravitational Wave Astronomy. CRC Press, 2021.
Знайти повний текст джерелаTaylor, Stephen R. Nanohertz Gravitational Wave Astronomy. Taylor & Francis Group, 2021.
Знайти повний текст джерелаTaylor, Stephen R. Nanohertz Gravitational Wave Astronomy. Taylor & Francis Group, 2021.
Знайти повний текст джерелаHoenselaers, Cornelius, Eduard Herlt, Dietrich Kramer, Malcolm MacCallum, and Hans Stephani. Exact Solutions of Einstein's Field Equations. Cambridge University Press, 2009.
Знайти повний текст джерелаЧастини книг з теми "Onde gravitationnelles"
HELLO, Patrice. "Ondes gravitationnelles." In Gravitation, 185–259. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9120.ch3.
Повний текст джерела"8 Ondes gravitationnelles." In Les relativités : Espace, Temps, Gravitation, 137–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1815-0-010.
Повний текст джерела"8 Ondes gravitationnelles." In Les relativités : Espace, Temps, Gravitation, 137–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1815-0.c010.
Повний текст джерела"8. Les ondes gravitationnelles." In Les ondes, 145–56. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3051-0.c008.
Повний текст джерела"Chapitre 6 – Ondes gravitationnelles." In Relativité générale et astrophysique, 211–38. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1896-9-007.
Повний текст джерела"4.8 Les ondes gravitationnelles." In Voyage dans les mathématiques de l'espace-temps, 117–22. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2278-2-027.
Повний текст джерела"Chapitre 6 – Ondes gravitationnelles." In Relativité générale et astrophysique, 211–38. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1896-9.c007.
Повний текст джерела"4.8 Les ondes gravitationnelles." In Voyage dans les mathématiques de l'espace-temps, 117–22. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2278-2.c027.
Повний текст джерелаHello, Patrice. "3 La première détection d’ondes gravitationnelles." In Ondes, matière et Univers, 95–104. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2265-2.c007.
Повний текст джерела"Ondes et rayonnement gravitationnels." In Gravitation relativiste, 237–53. EDP Sciences, 1994. http://dx.doi.org/10.1051/978-2-7598-0272-2.c068.
Повний текст джерела