Статті в журналах з теми "Omic network inference"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Omic network inference".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Nagpal, Sunil, Rashmi Singh, Deepak Yadav, and Sharmila S. Mande. "MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks." Nucleic Acids Research 48, W1 (April 27, 2020): W572—W579. http://dx.doi.org/10.1093/nar/gkaa254.
Повний текст джерелаDohlman, Anders B., and Xiling Shen. "Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference." Experimental Biology and Medicine 244, no. 6 (March 16, 2019): 445–58. http://dx.doi.org/10.1177/1535370219836771.
Повний текст джерелаRamos, Susana Isabel, Zarmeen Mussa, Bruno Giotti, Alexander Tsankov, and Nadejda Tsankova. "EPCO-25. MULTI-OMIC ANALYSIS OF THE GLIOBLASTOMA EPIGENOME AND TRANSCRIPTOME INFORMS OF MIGRATORY INTERNEURON-LIKE DEVELOPMENTAL REGULATORS." Neuro-Oncology 24, Supplement_7 (November 1, 2022): vii121. http://dx.doi.org/10.1093/neuonc/noac209.460.
Повний текст джерелаGrund, Eric M., A. James Moser, Corinne L. DeCicco, Nischal M. Chand, Genesis L. Perez-Melara, Gregory M. Miller, Punit Shah, et al. "Abstract 5145: Project Survival®: Discovery of a molecular-clinical phenome biomarker panel to detect pancreatic ductal adenocarcinoma among at risk populations using high-fidelity longitudinal phenotypic and multi-omic analysis." Cancer Research 82, no. 12_Supplement (June 15, 2022): 5145. http://dx.doi.org/10.1158/1538-7445.am2022-5145.
Повний текст джерелаNathasingh, Brandon, Derek Walkama, Laurel Mayhew, Kendall Loh, Jeanne Latourelle, Bruce W. Church, and Yaoyu E. Wang. "Abstract LB181: Infer cancer cell gene dependency in multiple myeloma using causal AI in-silico patient model." Cancer Research 83, no. 8_Supplement (April 14, 2023): LB181. http://dx.doi.org/10.1158/1538-7445.am2023-lb181.
Повний текст джерелаYe, Qing, and Nancy Lan Guo. "Inferencing Bulk Tumor and Single-Cell Multi-Omics Regulatory Networks for Discovery of Biomarkers and Therapeutic Targets." Cells 12, no. 1 (December 26, 2022): 101. http://dx.doi.org/10.3390/cells12010101.
Повний текст джерелаAlanis-Lobato, Gregorio, Thomas E. Bartlett, Qiulin Huang, Claire S. Simon, Afshan McCarthy, Kay Elder, Phil Snell, Leila Christie, and Kathy K. Niakan. "MICA: a multi-omics method to predict gene regulatory networks in early human embryos." Life Science Alliance 7, no. 1 (October 25, 2023): e202302415. http://dx.doi.org/10.26508/lsa.202302415.
Повний текст джерелаWang, Pei. "Network biology: Recent advances and challenges." Gene & Protein in Disease 1, no. 2 (October 6, 2022): 101. http://dx.doi.org/10.36922/gpd.v1i2.101.
Повний текст джерелаYan, Yan, Feng Jiang, Xinan Zhang, and Tianhai Tian. "Inference of Molecular Regulatory Systems Using Statistical Path-Consistency Algorithm." Entropy 24, no. 5 (May 13, 2022): 693. http://dx.doi.org/10.3390/e24050693.
Повний текст джерелаBonnet, Eric, Laurence Calzone, and Tom Michoel. "Integrative Multi-omics Module Network Inference with Lemon-Tree." PLOS Computational Biology 11, no. 2 (February 13, 2015): e1003983. http://dx.doi.org/10.1371/journal.pcbi.1003983.
Повний текст джерелаWang, Huange, Joao Paulo, Willem Kruijer, Martin Boer, Hans Jansen, Yury Tikunov, Björn Usadel, Sjaak van Heusden, Arnaud Bovy, and Fred van Eeuwijk. "Genotype–phenotype modeling considering intermediate level of biological variation: a case study involving sensory traits, metabolites and QTLs in ripe tomatoes." Molecular BioSystems 11, no. 11 (2015): 3101–10. http://dx.doi.org/10.1039/c5mb00477b.
Повний текст джерелаZarayeneh, Neda, Euiseong Ko, Jung Hun Oh, Sang Suh, Chunyu Liu, Jean Gao, Donghyun Kim, and Mingon Kang. "Integration of multi-omics data for integrative gene regulatory network inference." International Journal of Data Mining and Bioinformatics 18, no. 3 (2017): 223. http://dx.doi.org/10.1504/ijdmb.2017.087178.
Повний текст джерелаKang, Mingon, Donghyun Kim, Jean Gao, Chunyu Liu, Sang Suh, Jung Hun Oh, Neda Zarayeneh, and Euiseong Ko. "Integration of multi-omics data for integrative gene regulatory network inference." International Journal of Data Mining and Bioinformatics 18, no. 3 (2017): 223. http://dx.doi.org/10.1504/ijdmb.2017.10008266.
Повний текст джерелаHu, Xinlin, Yaohua Hu, Fanjie Wu, Ricky Wai Tak Leung, and Jing Qin. "Integration of single-cell multi-omics for gene regulatory network inference." Computational and Structural Biotechnology Journal 18 (2020): 1925–38. http://dx.doi.org/10.1016/j.csbj.2020.06.033.
Повний текст джерелаPeñagaricano, F. "S0101 Causal inference of molecular networks integrating multi-omics data." Journal of Animal Science 94, suppl_4 (September 1, 2016): 2. http://dx.doi.org/10.2527/jas2016.94supplement42a.
Повний текст джерелаPeñagaricano, F. "0412 Causal inference of molecular networks integrating multi-omics data." Journal of Animal Science 94, suppl_5 (October 1, 2016): 199–200. http://dx.doi.org/10.2527/jam2016-0412.
Повний текст джерелаSun, Xiaoqiang, Ji Zhang, and Qing Nie. "Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples." PLOS Computational Biology 17, no. 3 (March 5, 2021): e1008379. http://dx.doi.org/10.1371/journal.pcbi.1008379.
Повний текст джерелаGao, Wenliang, Wei Kong, Shuaiqun Wang, Gen Wen, and Yaling Yu. "Biomarker Genes Discovery of Alzheimer’s Disease by Multi-Omics-Based Gene Regulatory Network Construction of Microglia." Brain Sciences 12, no. 9 (September 5, 2022): 1196. http://dx.doi.org/10.3390/brainsci12091196.
Повний текст джерелаFederico, Anthony, Joseph Kern, Xaralabos Varelas, and Stefano Monti. "Structure Learning for Gene Regulatory Networks." PLOS Computational Biology 19, no. 5 (May 18, 2023): e1011118. http://dx.doi.org/10.1371/journal.pcbi.1011118.
Повний текст джерелаCha, Junha, and Insuk Lee. "Single-cell network biology for resolving cellular heterogeneity in human diseases." Experimental & Molecular Medicine 52, no. 11 (November 2020): 1798–808. http://dx.doi.org/10.1038/s12276-020-00528-0.
Повний текст джерелаCapobianco, Enrico. "Next Generation Networks: Featuring the Potential Role of Emerging Applications in Translational Oncology." Journal of Clinical Medicine 8, no. 5 (May 11, 2019): 664. http://dx.doi.org/10.3390/jcm8050664.
Повний текст джерелаHan, Xudong, Bing Wang, Chenghao Situ, Yaling Qi, Hui Zhu, Yan Li, and Xuejiang Guo. "scapGNN: A graph neural network–based framework for active pathway and gene module inference from single-cell multi-omics data." PLOS Biology 21, no. 11 (November 13, 2023): e3002369. http://dx.doi.org/10.1371/journal.pbio.3002369.
Повний текст джерелаKim, So Yeon, Eun Kyung Choe, Manu Shivakumar, Dokyoon Kim, and Kyung-Ah Sohn. "Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer." Bioinformatics 37, no. 16 (February 5, 2021): 2405–13. http://dx.doi.org/10.1093/bioinformatics/btab086.
Повний текст джерелаVincent, Jonathan, Pierre Martre, Benjamin Gouriou, Catherine Ravel, Zhanwu Dai, Jean-Marc Petit, and Marie Pailloux. "RulNet: A Web-Oriented Platform for Regulatory Network Inference, Application to Wheat –Omics Data." PLOS ONE 10, no. 5 (May 19, 2015): e0127127. http://dx.doi.org/10.1371/journal.pone.0127127.
Повний текст джерелаSchneider, Nimisha, Sergey Korkhov, Alexis Foroozan, Scott Marshall, and Renee Deehan. "Causal inferencing of -omics data from The Cancer Genome Atlas: Lung adenocarcinoma tumors for mechanistic disease characterization and feature engineering." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e21016-e21016. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e21016.
Повний текст джерелаYuan, Lin, Le-Hang Guo, Chang-An Yuan, Youhua Zhang, Kyungsook Han, Asoke K. Nandi, Barry Honig, and De-Shuang Huang. "Integration of Multi-Omics Data for Gene Regulatory Network Inference and Application to Breast Cancer." IEEE/ACM Transactions on Computational Biology and Bioinformatics 16, no. 3 (May 1, 2019): 782–91. http://dx.doi.org/10.1109/tcbb.2018.2866836.
Повний текст джерелаPanchal, Viral, and Daniel F. Linder. "Reverse engineering gene networks using global–local shrinkage rules." Interface Focus 10, no. 1 (December 13, 2019): 20190049. http://dx.doi.org/10.1098/rsfs.2019.0049.
Повний текст джерелаChen, Chen, Enakshi Saha, Dawn L. DeMeo, John Quackenbush, and Camila M. Lopes-Ramos. "Abstract 3490: Unveiling sex differences in lung adenocarcinoma through multi-omics integrative protein signaling networks." Cancer Research 84, no. 6_Supplement (March 22, 2024): 3490. http://dx.doi.org/10.1158/1538-7445.am2024-3490.
Повний текст джерелаWani, Nisar, and Khalid Raza. "MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks." PeerJ Computer Science 7 (January 28, 2021): e363. http://dx.doi.org/10.7717/peerj-cs.363.
Повний текст джерелаQian, Yichun, and Shao-shan Carol Huang. "Improving plant gene regulatory network inference by integrative analysis of multi-omics and high resolution data sets." Current Opinion in Systems Biology 22 (August 2020): 8–15. http://dx.doi.org/10.1016/j.coisb.2020.07.010.
Повний текст джерелаBenedetti, Elisa, Nathalie Gerstner, Maja Pučić-Baković, Toma Keser, Karli R. Reiding, L. Renee Ruhaak, Tamara Štambuk, et al. "Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference." Metabolites 10, no. 7 (July 2, 2020): 271. http://dx.doi.org/10.3390/metabo10070271.
Повний текст джерелаConard, Ashley Mae, Nathaniel Goodman, Yanhui Hu, Norbert Perrimon, Ritambhara Singh, Charles Lawrence, and Erica Larschan. "TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data." Nucleic Acids Research 49, W1 (June 14, 2021): W641—W653. http://dx.doi.org/10.1093/nar/gkab384.
Повний текст джерелаZeng, Irene Sui Lan, and Thomas Lumley. "Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science)." Bioinformatics and Biology Insights 12 (January 1, 2018): 117793221875929. http://dx.doi.org/10.1177/1177932218759292.
Повний текст джерелаNeutsch, Steffen, Caroline Heneka, and Marcus Brüggen. "Inferring astrophysics and dark matter properties from 21 cm tomography using deep learning." Monthly Notices of the Royal Astronomical Society 511, no. 3 (January 29, 2022): 3446–62. http://dx.doi.org/10.1093/mnras/stac218.
Повний текст джерелаUltsch, Alfred, and Jörn Lötsch. "Robust Classification Using Posterior Probability Threshold Computation Followed by Voronoi Cell Based Class Assignment Circumventing Pitfalls of Bayesian Analysis of Biomedical Data." International Journal of Molecular Sciences 23, no. 22 (November 15, 2022): 14081. http://dx.doi.org/10.3390/ijms232214081.
Повний текст джерелаYang, Jiyuan, Sheetal Bhatara, Masayuki Umeda, Shanshan Bradford, SongEun Lim, Tamara Westover, Jing Ma, Lauren Ezzell, Jeffery Klco, and Jiyang Yu. "Dissecting Subtype-Specific Tumor-Time Interactions and Underlying Hidden Drivers in Pediatric Acute Myeloid Leukemia Via Single-Cell Multi-Omics." Blood 142, Supplement 1 (November 28, 2023): 5977. http://dx.doi.org/10.1182/blood-2023-189178.
Повний текст джерелаFang, Yan, Jiayin Yu, Yumei Ding, and Xiaohua Lin. "Inferring Complementary and Substitutable Products Based on Knowledge Graph Reasoning." Mathematics 11, no. 22 (November 20, 2023): 4709. http://dx.doi.org/10.3390/math11224709.
Повний текст джерелаKlepikova, Anna V., and Aleksey A. Penin. "Gene Expression Maps in Plants: Current State and Prospects." Plants 8, no. 9 (August 28, 2019): 309. http://dx.doi.org/10.3390/plants8090309.
Повний текст джерелаChen, Xi, Yuan Wang, Antonio Cappuccio, Wan-Sze Cheng, Frederique Ruf Zamojski, Venugopalan D. Nair, Clare M. Miller, et al. "Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data." Nature Computational Science 3, no. 7 (July 25, 2023): 644–57. http://dx.doi.org/10.1038/s43588-023-00476-5.
Повний текст джерелаGuo, Tingbo, Haiqi Zhu, Xiao Wang, Jia Wang, Xinyu Zhou, Yuhui Wei, Pengtao Dang, Chi Zhang, and Sha Cao. "Abstract 2072: Computational modeling of metabolic variations in tumor microenvironment." Cancer Research 83, no. 7_Supplement (April 4, 2023): 2072. http://dx.doi.org/10.1158/1538-7445.am2023-2072.
Повний текст джерелаJin, Qiao, and Ronald Ching Wan Ma. "Metabolomics in Diabetes and Diabetic Complications: Insights from Epidemiological Studies." Cells 10, no. 11 (October 21, 2021): 2832. http://dx.doi.org/10.3390/cells10112832.
Повний текст джерелаSchwaber, Jessica L., Darren Korbie, Stacey Andersen, Erica Lin, Panagiotis K. Chrysanthopoulos, Matt Trau, and Lars K. Nielsen. "Network mapping of primary CD34+ cells by Ampliseq based whole transcriptome targeted resequencing identifies unexplored differentiation regulatory relationships." PLOS ONE 16, no. 2 (February 5, 2021): e0246107. http://dx.doi.org/10.1371/journal.pone.0246107.
Повний текст джерелаMajumdar, Abhishek, Yueze Liu, Yaoqin Lu, Shaofeng Wu, and Lijun Cheng. "kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression." Genes 12, no. 6 (May 30, 2021): 844. http://dx.doi.org/10.3390/genes12060844.
Повний текст джерелаClark, Natalie M., Trevor M. Nolan, Ping Wang, Gaoyuan Song, Christian Montes, Conner T. Valentine, Hongqing Guo, Rosangela Sozzani, Yanhai Yin, and Justin W. Walley. "Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis." Nature Communications 12, no. 1 (October 6, 2021). http://dx.doi.org/10.1038/s41467-021-26165-3.
Повний текст джерелаBen Guebila, Marouen, Tian Wang, Camila M. Lopes-Ramos, Viola Fanfani, Des Weighill, Rebekka Burkholz, Daniel Schlauch, et al. "The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks." Genome Biology 24, no. 1 (March 9, 2023). http://dx.doi.org/10.1186/s13059-023-02877-1.
Повний текст джерелаKim, Daniel, Andy Tran, Hani Jieun Kim, Yingxin Lin, Jean Yee Hwa Yang, and Pengyi Yang. "Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data." npj Systems Biology and Applications 9, no. 1 (October 19, 2023). http://dx.doi.org/10.1038/s41540-023-00312-6.
Повний текст джерелаFotuhi Siahpirani, Alireza, Sara Knaack, Deborah Chasman, Morten Seirup, Rupa Sridharan, Ron Stewart, James Thomson, and Sushmita Roy. "Dynamic regulatory module networks for inference of cell type-specific transcriptional networks." Genome Research, June 15, 2022, gr.276542.121. http://dx.doi.org/10.1101/gr.276542.121.
Повний текст джерелаOgris, Christoph, Yue Hu, Janine Arloth, and Nikola S. Müller. "Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data." Scientific Reports 11, no. 1 (March 24, 2021). http://dx.doi.org/10.1038/s41598-021-85544-4.
Повний текст джерелаCapobianco, Enrico, Elisabetta Marras, and Antonella Travaglione. "Multiscale Characterization of Signaling Network Dynamics through Features." Statistical Applications in Genetics and Molecular Biology 10, no. 1 (January 20, 2011). http://dx.doi.org/10.2202/1544-6115.1657.
Повний текст джерелаZhang, Shilu, Saptarshi Pyne, Stefan Pietrzak, Spencer Halberg, Sunnie Grace McCalla, Alireza Fotuhi Siahpirani, Rupa Sridharan, and Sushmita Roy. "Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets." Nature Communications 14, no. 1 (May 27, 2023). http://dx.doi.org/10.1038/s41467-023-38637-9.
Повний текст джерела