Зміст
Добірка наукової літератури з теми "OH point defects"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "OH point defects".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "OH point defects"
Stalder, Roland. "OH point defects in quartz – a review." European Journal of Mineralogy 33, no. 2 (April 13, 2021): 145–63. http://dx.doi.org/10.5194/ejm-33-145-2021.
Повний текст джерелаGose, Jürgen, Esther Schmädicke, Margit Markowitz, and Anton Beran. "OH point defects in olivine from Pakistan." Mineralogy and Petrology 99, no. 1-2 (November 8, 2009): 105–11. http://dx.doi.org/10.1007/s00710-009-0095-9.
Повний текст джерелаRyu, Gyeong Hee, Sungwoo Lee, Jung Hwa Kim, Gun-Do Lee, and Zonghoon Lee. "OH molecule-involved formation of point defects in monolayer graphene." Nanotechnology 32, no. 2 (October 15, 2020): 025704. http://dx.doi.org/10.1088/1361-6528/abb9d7.
Повний текст джерелаChigo Anota, E., and Gregorio Cocoletzi. "Influence of point defects on the structural and electronic properties of SiC nanotubes." Open Chemistry 12, no. 1 (January 1, 2014): 53–59. http://dx.doi.org/10.2478/s11532-013-0357-6.
Повний текст джерелаGabain, А. A. "Determination of OH-groups concentration, and point defects in lithium niobate crystals." Transaction Kola Science Centre 11, no. 3-2020 (November 25, 2020): 38–43. http://dx.doi.org/10.37614/2307-5252.2020.3.4.007.
Повний текст джерелаYoo, Dong Su, Jung Sang Cho, Yong-Chae Chung, and Sang-Hoon Rhee. "Defect structures of sodium and chloride co-substituted hydroxyapatite and its osseointegration capacity." Journal of Materials Science 56, no. 9 (January 3, 2021): 5493–508. http://dx.doi.org/10.1007/s10853-020-05645-9.
Повний текст джерелаСидоров, Н. В., М. В. Смирнов, Н. А. Теплякова та М. Н. Палатников. "Фотолюминесценция и особенности дефектной структуры конгруэнтных и близких к стехиометрическому составу кристаллов ниобата лития, полученных по разным технологиям". Журнал технической физики 128, № 5 (2020): 643. http://dx.doi.org/10.21883/os.2020.05.49324.333-19.
Повний текст джерелаSmirnov, M. V., N. V. Sidorov, N. A. Teplyakova, and V. B. Pikulev. "Photoluminescence and features of the defective structure of nominally pure lithium niobate single crystals." Transaction Kola Science Centre 11, no. 3-2020 (November 25, 2020): 173–77. http://dx.doi.org/10.37614/2307-5252.2020.3.4.037.
Повний текст джерелаТеплякова, Наталья Александровна, Николай Васильевич Сидоров, and Михаил Николаевич Палатников. "CALCULATION OF THE POINT DEFECT CONCENTRATION OF THE CATION SUBLATTICE AND HYDROXYL GROUPS IN LITHIUM NIOBATE CRYSTALS OF DIFFERENT COMPOSITION." Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, no. 12() (December 15, 2020): 200–205. http://dx.doi.org/10.26456/pcascnn/2020.12.200.
Повний текст джерелаDőri, Ferenc. "Effect of combined therapeutical methods on healing of intrabony defects in regenerative periodontal surgery." Orvosi Hetilap 150, no. 11 (March 2009): 517–22. http://dx.doi.org/10.1556/oh.2009.28500.
Повний текст джерелаДисертації з теми "OH point defects"
Thomaidis, Konstantinos. "Do mantle xenoliths preserve water signature from the lithospheric mantle and how ? : An analytical, experimental and numerical approach." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR008.
Повний текст джерелаWater in the form of hydrous point defects in the crystal structure of pyroxenes (pxs) from mantle xenoliths is frequently used to trace the water content in the lithospheric mantle. However, little is known on the mechanism that allows xenoliths to preserve deep hydrogen (H) signatures and if we can avoid complete or partial reset by reaction with the host magma during transport. Especially, it is unknown: 1) how much water content of xenoliths is modified by the eruption mode (effusive versus explosive) and during lava emplacement 2) how grain boundaries (gb) can affect H exchange in the xenolith with the surrounding melt. The aim of this thesis is to provide better understanding on these two aspects of the preservation of water signature in mantle xenoliths. The first question is approached through an analytical study of peridotite xenoliths from two localities in the French Massif Central, Allègre and Ray Pic. We performed around 1000 FTIR point analysis and profile measurements in ol, cpx and opx crystals derived from 16 xenoliths collected on both localities. The two localities have different lava flow structures, Allègre is a frozen lava lake and has a vertical structure while Ray Pic basaltic lava flow is a typical elongated/horizontally one. In Allègre, we studied xenoliths from different heights in the 30 m lava body. In Ray Pic we sampled xenoliths along the 20 km lava flow and in a pyroclastic deposit at the volcanic edifice. Both studies show that there is no evidence that cooling and solidification of basaltic flows affect the total water content of pxs in mantle xenoliths. However, the comparison of the xenoliths from the pyroclastic deposit and the lava flow at Ray Pic shows that the water concentration is strongly affected by the degree of degassing of the magma prior the eruption. In addition, xenoliths with different spectral signatures of pxs coexist with the same lava flow suggesting that the emplacement and degassing does not affect spectral signatures, suggesting that they may preserve signatures acquired earlier.For the second question, we concentrated on the study of the role of gb on the H isotopic exchange of the xenoliths with its surrounding. We used a combine experimental and numerical approach. In our experimental approach, we present results from hydrogen-deuterium exchange experiments performed in cm-size cubic pieces of a natural xenolith, a spinel lherzolite aggregate. Experiments were performed between 600-900oC in a deuterium (D) enriched gas, at room pressure. We used single crystals of opx from the same xenolith, as sensors of the progress of the exchange within the polycrystalline aggregates. We compared diffusion profiles measured in single crystals and opx located at the edge of the cubes with diffusion profiles in opx inside the cubes, not directly in contact with the gas. Diffusion profiles were analysed through a 2D numerical modelling software (Idefick). Our H-D diffusion laws for intra-crystalline diffusion in mantle opx are slightly slower but comparable to the ones in literature for synthetic pure enstatite. OH-OD profiles recorded by FTIR in opx inside the cubes are only moderately shorter than the ones recorded in opx at the edge of the cubes (i.e. apparent diffusion inside the cubes are only moderately slower). These results indicate that the isotopic diffusion of H in gb is fast enough to equilibrate rapidly the opx crystals inside the cube xenoliths. It shows that grain boundary diffusion involving H-D exchange in xenoliths is at least 3 orders of magnitude faster than intra-crystalline diffusion in opx. This can be a first-evidence that in nature the δD signature of xenoliths is very likely controlled by the equilibrium with the host magma even in the case of xenoliths with large grain size. It provides explanation why pxs from most mantle xenoliths have depleted δD signatures. These rather reflect equilibrium with a degassed magma than an original mantle signature