Добірка наукової літератури з теми "Odor vector"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Odor vector".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Odor vector"
Yan, Luchun, Chuandong Wu, and Jiemin Liu. "Visual Analysis of Odor Interaction Based on Support Vector Regression Method." Sensors 20, no. 6 (March 19, 2020): 1707. http://dx.doi.org/10.3390/s20061707.
Повний текст джерелаAleixandre, Manuel, Kaoru Nakazawa, and Takamichi Nakamoto. "Optimization of Modulation Methods for Solenoid Valves to Realize an Odor Generation System." Sensors 19, no. 18 (September 17, 2019): 4009. http://dx.doi.org/10.3390/s19184009.
Повний текст джерелаYamanaka, Takao, Nitikarn Nimsuk, and Takamichi Nakamoto. "Concurrent Recording and Regeneration of Visual and Olfactory Information Using Odor Sensor." Presence: Teleoperators and Virtual Environments 16, no. 3 (June 1, 2007): 307–17. http://dx.doi.org/10.1162/pres.16.3.307.
Повний текст джерелаChai, Hwa Chia, and Kek Heng Chua. "The Potential Use of Volatile Biomarkers for Malaria Diagnosis." Diagnostics 11, no. 12 (November 30, 2021): 2244. http://dx.doi.org/10.3390/diagnostics11122244.
Повний текст джерелаRobinson, Ailie, Annette O. Busula, Mirjam A. Voets, Khalid B. Beshir, John C. Caulfield, Stephen J. Powers, Niels O. Verhulst, et al. "Plasmodium-associated changes in human odor attract mosquitoes." Proceedings of the National Academy of Sciences 115, no. 18 (April 16, 2018): E4209—E4218. http://dx.doi.org/10.1073/pnas.1721610115.
Повний текст джерелаOgawa, Keishiro, Katsufumi Inoue, Michifumi Yoshioka, and Hidekazu Yanagimoto. "Odor Detecting Algorithm with Boundary Compensation Support Vector Machine." IEEJ Transactions on Electronics, Information and Systems 135, no. 7 (2015): 920–26. http://dx.doi.org/10.1541/ieejeiss.135.920.
Повний текст джерелаHusni, Nyayu Latifah, Siti Nurmaini, Irsyadi Yani, and Ade Silvia. "Intelligent Sensing Using Metal Oxide Semiconductor Based-on Support Vector Machine for Odor Classification." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (December 1, 2018): 4133. http://dx.doi.org/10.11591/ijece.v8i6.pp4133-4147.
Повний текст джерелаMweresa, Collins K., W. R. Mukabana, J. J. A. van Loon, M. Dicke, and W. Takken. "Use of semiochemicals for surveillance and control of hematophagous insects." Chemoecology 30, no. 6 (June 23, 2020): 277–86. http://dx.doi.org/10.1007/s00049-020-00317-1.
Повний текст джерелаMayer, Christoph J., Andreas Vilcinskas, and Jürgen Gross. "Phytopathogen Lures Its Insect Vector by Altering Host Plant Odor." Journal of Chemical Ecology 34, no. 8 (July 4, 2008): 1045–49. http://dx.doi.org/10.1007/s10886-008-9516-1.
Повний текст джерелаChoi, Sang-Il, and Gu-Min Jeong. "A Discriminant Distance Based Composite Vector Selection Method for Odor Classification." Sensors 14, no. 4 (April 17, 2014): 6938–51. http://dx.doi.org/10.3390/s140406938.
Повний текст джерелаДисертації з теми "Odor vector"
Galan, Roberto Fernandez. "Odor coding and memory traces in the antennal lobe of honeybee." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2003. http://dx.doi.org/10.18452/14997.
Повний текст джерелаTwo major novel results are reported in this work. The first concerns olfactory coding and the second concerns sensory memory. Both phenomena are investigated in the brain of the honeybee as a model system. Considering olfactory coding I demonstrate that the neural dynamics in the antennal lobe describe odor-specific trajectories during stimulation that converge to odor-specific attractors. The time interval to reach these attractors is, regardless of odor identity and concentration, approximately 800 ms. I show that support-vector machines and, in particular perceptrons provide a realistic and biological model of the interaction between the antennal lobe (coding network) and the mushroom body (decoding network). This model can also account for reaction-times of about 300 ms and for concentration invariance of odor perception. Regarding sensory memory I show that a single stimulation without reward induces changes of pairwise correlation between glomeruli in a Hebbian-like manner. I demonstrate that those changes of correlation suffice to retrieve the last stimulus presented in 2/3 of the bees studied. Succesful retrieval decays to 1/3 of the bees within the second minute after stimulation. In addition, a principal-component analysis of the spontaneous activity reveals that the dominant pattern of the network during the spontaneous activity after, but not before stimulation, reproduces the odor-induced activity pattern in 2/3 of the bees studied. One can therefore consider the odor-induced (changes of) correlation as traces of a short-term memory or as Hebbian reverberations.
Носова, Яна Віталіївна. "Методи та засоби визначення респіраторно-ольфакторних порушень". Thesis, Харківський національний університет радіоелектроніки, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39479.
Повний текст джерелаThe thesis of competition for the scientific degree of Candidate of Technical Sciences on specialty 05.11.17 – Biological and Medical Devices and Systems. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. In the absence of modern evidence-based methods of olfactometry, it is advisable to develop methods and means of respiratory and olfactory disorders. The dissertation is devoted to the solution of a specific scientific problem - the development of methods and means for the objective determination of respiratory and olfactory disorders. Based on the study of the aerodynamics of the nose at the micro level a method has been developed for determining the laminar boundary layer of the air flow in the upper respiratory tract, which makes it possible, by studying the thickness of the near-wall air flow relative to the unevenness of the mucous membrane, to determine the pathological regions of the nasal cavity in different breathing patterns. A method and means for objective diagnosis of respiratory and olfactory disorders have been developed, which allow, by determining the energy characteristics of nasal breathing under the action of various odorivectors, to determine the corresponding thresholds of olfactory sensitivity at an evidence-based level. The improved method for determining the threshold of olfactory sensitivity allows to increase the objectivity of diagnosing olfactory sensitivity disorders or respiratory olfactory disorders by analyzing the shape of the cycloramas of nasal breathing.
Носова, Яна Віталіївна. "Методи та засоби визначення респіраторно-ольфакторних порушень". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39477.
Повний текст джерелаThe thesis of competition for the scientific degree of Candidate of Technical Sciences on specialty 05.11.17 – Biological and Medical Devices and Systems. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. In the absence of modern evidence-based methods of olfactometry, it is advisable to develop methods and means of respiratory and olfactory disorders. The dissertation is devoted to the solution of a specific scientific problem - the development of methods and means for the objective determination of respiratory and olfactory disorders. Based on the study of the aerodynamics of the nose at the micro level a method has been developed for determining the laminar boundary layer of the air flow in the upper respiratory tract, which makes it possible, by studying the thickness of the near-wall air flow relative to the unevenness of the mucous membrane, to determine the pathological regions of the nasal cavity in different breathing patterns. A method and means for objective diagnosis of respiratory and olfactory disorders have been developed, which allow, by determining the energy characteristics of nasal breathing under the action of various odorivectors, to determine the corresponding thresholds of olfactory sensitivity at an evidence-based level. The improved method for determining the threshold of olfactory sensitivity allows to increase the objectivity of diagnosing olfactory sensitivity disorders or respiratory olfactory disorders by analyzing the shape of the cycloramas of nasal breathing.
Matowo, Nancy Stephen. "Attracting and killing outdoor-biting malaria vectors using odour-baited mosquito landing boxes (MLB) equipped with low-cost electrocuting grids." Thesis, 2015. http://hdl.handle.net/10539/18436.
Повний текст джерелаBackground: Ongoing residual malaria transmission is increasingly mediated by outdoor-biting mosquito populations, especially in communities where insecticidal interventions like indoor residual insecticides (IRS) and long-lasting insecticide treated nets (LLINs), are used. Often, the vectors are also physiologically resistant to the insecticides, making this a major against malaria elimination.
Частини книг з теми "Odor vector"
Zhang, Lei, Fengchun Tian, and David Zhang. "Discriminative Support Vector Machine-Based Odor Classification." In Electronic Nose: Algorithmic Challenges, 79–93. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2167-2_6.
Повний текст джерелаKusumoputro, B. "Development of Fuzzy Learning Vector Quantization Neural Network for Artificial Odor Discrimination System." In Artificial Neural Nets and Genetic Algorithms, 312–16. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6384-9_52.
Повний текст джерелаGoletsis, Y., C. Papaloukas, Th Exarhos, and C. D. Katsis. "Bankruptcy Prediction through Artificial Intelligence." In Machine Learning, 684–93. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch320.
Повний текст джерелаТези доповідей конференцій з теми "Odor vector"
Husni, Nyayu Latifah, Ade Silvia Handayani, Siti Nurmaini, and Irsyadi Yani. "Odor classification using Support Vector Machine." In 2017 International Conference on Electrical Engineering and Computer Science (ICECOS). IEEE, 2017. http://dx.doi.org/10.1109/icecos.2017.8167170.
Повний текст джерелаul Hasan, Najam, Naveed Ejaz, Waleed Ejaz, and Hyung Seok Kim. "Malicious odor item identification using an electronic nose based on support vector machine classification." In 2012 IEEE 1st Global Conference on Consumer Electronics (GCCE). IEEE, 2012. http://dx.doi.org/10.1109/gcce.2012.6379638.
Повний текст джерелаKusumoputro, Benyamin, Hary Budiarto, and Wisnu Jatmiko. "Fuzzy learning vector quantization neural network and its application for artificial odor recognition system." In AeroSense 2000, edited by Kevin L. Priddy, Paul E. Keller, and David B. Fogel. SPIE, 2000. http://dx.doi.org/10.1117/12.380590.
Повний текст джерелаJatmiko, W., Rochmatullah, B. Kusumoputro, H. R. Sanabila, K. Sekiyama, and T. Fukuda. "Visualization and statistical analysis of fuzzy-neuro learning vector quantization based on particle swarm optimization for recognizing mixture odors." In 2009 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2009. http://dx.doi.org/10.1109/mhs.2009.5352022.
Повний текст джерела