Статті в журналах з теми "Numerical Synthesis"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Numerical Synthesis.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Numerical Synthesis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Miles, M. D., and E. R. Funke. "NUMERICAL COMPARISON OF WAVE SYNTHESIS METHODS." Coastal Engineering Proceedings 1, no. 21 (January 29, 1988): 6. http://dx.doi.org/10.9753/icce.v21.6.

Повний текст джерела
Анотація:
A numerical comparison study is carried out on a variety of methods for synthesizing pseudo-random Gaussian wave records for laboratory wave generation. Three nonharmonic superposition methods and three time domain filtering procedures are compared to a harmonic FFT technique. The synthesis methods are evaluated on the basis of a statistical analysis of 16 standard wave parameters obtained from a set of 200 wave records. Second order group-bounded long wave components are also investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Swart, W. A., and J. C. Olivier. "Numerical synthesis of arbitrary discrete arrays." IEEE Transactions on Antennas and Propagation 41, no. 8 (1993): 1171–74. http://dx.doi.org/10.1109/8.244665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kazakov, A. V., S. A. Khaustov, R. B. Tabakaev, and Y. A. Belousova. "Numerical simulation of synthesis gas incineration." IOP Conference Series: Materials Science and Engineering 124 (April 2016): 012110. http://dx.doi.org/10.1088/1757-899x/124/1/012110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bilbao, Stefan. "Conservative numerical methods for sound synthesis." Journal of the Acoustical Society of America 119, no. 5 (May 2006): 3325. http://dx.doi.org/10.1121/1.4786365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lakshmikantha, M. G., A. Bhattacharya, and J. A. Sekhar. "Numerical modeling of solidification combustion synthesis." Metallurgical Transactions A 23, no. 1 (January 1992): 23–34. http://dx.doi.org/10.1007/bf02660847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ларюнин, Олег, and Oleg Laryunin. "Numerical synthesis of ionograms in horizontally inhomogeneous ionosphere on the basis of compound parabolic layer model." Solar-Terrestrial Physics 2, no. 3 (October 27, 2016): 74–86. http://dx.doi.org/10.12737/22286.

Повний текст джерела
Анотація:
Characteristic U-shaped traces (cusps) on ionograms have been identified as off-angle echoes from sloping electron density contours caused by the presence of traveling ionospheric disturbances (TIDs). Temporal evolution of the cusps is associated with horizontal drift of the disturbances. A potential for reducing calculation time in numerical synthesis of vertical ionograms is under discussion. Since numerical ray tracing is computationally intensive, we have developed simplified formulation for this study. The suggested model of compound parabolic layer allows us to analytically calculate ray paths. Changes in the shape of the ionogram cusp caused by varying TID characteristics are examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wen, Shenjie, and Lei Zhu. "NUMERICAL SYNTHESIS DESIGN OF COUPLED RESONATOR FILTERS." Progress In Electromagnetics Research 92 (2009): 333–46. http://dx.doi.org/10.2528/pier09041102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Geffe, P. R. "On numerical technique in analog filter synthesis." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44, no. 4 (April 1997): 336–38. http://dx.doi.org/10.1109/82.566653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Olen, C. A., and R. T. Compton. "A numerical pattern synthesis algorithm for arrays." IEEE Transactions on Antennas and Propagation 38, no. 10 (1990): 1666–76. http://dx.doi.org/10.1109/8.59781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Egorov, Yu G., G. Yu Kiryachenko, and E. A. Popov. "Numerical Methods of Suboptimal Programs Synthesis for Accelerometer Unit." Giroskopiya i Navigatsiya 29, no. 2 (2021): 47–58. http://dx.doi.org/10.17285/0869-7035.0062.

Повний текст джерела
Анотація:
The paper presents the results of synthesis of calibration programs consisting of 9 and 18 measurement positions. The synthesis was performed by numerical methods for scalar (invariant) technique of accelerometer unit calibration. The resulting programs are compared to the existing calibration programs which have been obtained analytically. The results of mathematical simulation and field experiment confirm the theoretical calculations, as well as the effective application of the obtained calibration programs.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Günel, T. "Synthesis of Radial Stubs Using a Numerical Model." Journal of Microwave Power and Electromagnetic Energy 35, no. 1 (January 2000): 51–56. http://dx.doi.org/10.1080/08327823.2000.11688419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tyatyushkin, A. I., and O. V. Morzhin. "An algorithm for numerical synthesis of optimal control." Automation and Remote Control 69, no. 4 (April 2008): 645–53. http://dx.doi.org/10.1134/s0005117908040115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Nicholls, R. W., and M. W. P. Cann. "Commission 14: Realistic Numerical Synthesis of Molecular Spectra." Transactions of the International Astronomical Union 19, no. 2 (1985): 146–52. http://dx.doi.org/10.1017/s0251107x00005319.

Повний текст джерела
Анотація:
Spectrocopy is the classical diagnostic tool of astrophysics. Intensities and line shapes of well identified emission and/or absorption atomic and molecular features are used to provide information on species concentrations, and degree of excitation, from which gas kinetic, rotational, vibrational, electronic and excitation “temperatures” can be inferred when LTE conditions exist. Departures from LTE can also be determined spectroscopically. Diagnostic interpretation of spectra in optically thin circumstances is fairly straightforward. However, in optically thick conditions when the photon mean free path is very much less than the geometrical path, the emission spectrum is controlled by the absorption coefficient (Armstrong and Nicholls, 1972), (see equation 4a).
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Cantoni, M. W., and K. Glover. "H∞ sampled-data synthesis and related numerical issues." Automatica 33, no. 12 (December 1997): 2233–41. http://dx.doi.org/10.1016/s0005-1098(97)00151-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Martı́nez, G., A. H. Azbaid, and A. D. Dymnikov. "Numerical synthesis of an optimal microprobe focusing system." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 427, no. 1-2 (May 1999): 344–49. http://dx.doi.org/10.1016/s0168-9002(98)01556-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Spanos, P.-T. D., and K. P. Schultz. "Numerical synthesis of trivariate velocity realizations of turbulence." International Journal of Non-Linear Mechanics 21, no. 4 (January 1986): 269–77. http://dx.doi.org/10.1016/0020-7462(86)90034-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Hill, David. "A Numerical Method for Near-Field Array Synthesis." IEEE Transactions on Electromagnetic Compatibility EMC-27, no. 4 (November 1985): 201–11. http://dx.doi.org/10.1109/temc.1985.304291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Colonna, Jean-François. "Picture synthesis: An essential tool for numerical experimentation." Computer Physics Communications 49, no. 1 (April 1988): 215–28. http://dx.doi.org/10.1016/0010-4655(88)90229-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Yurchenko, Lidiya V. "Some aspects of electron-optical system numerical synthesis." Microwave and Optical Technology Letters 10, no. 2 (October 5, 1995): 104–8. http://dx.doi.org/10.1002/mop.4650100212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhmud, V. A., A. S. Vostrikov, A. Yu Ivoilov, and G. V. Sablina. "Synthesis of Robust PID Controllers by Double Optimization Method." Mekhatronika, Avtomatizatsiya, Upravlenie 21, no. 2 (February 10, 2020): 67–74. http://dx.doi.org/10.17587/mau.21.67-73.

Повний текст джерела
Анотація:
The design of adaptive controllers allows to solve the problem of control of the object with non-stationary parameters. However, if the parameters of the object do not change too much or if only a certain interval of their change is known, it may turn out that an adaptive controller is not required, since the problem can be solved with the help of a robust controller. The robust controller allows to provide an acceptable quality of control even if the parameters of the mathematical model of the object change in some predetermined interval. A method of designing such controllers is known as the method of numerical optimization of the controllers used in the ensemble of systems in which the models of objects are different and the models of controllers are identical. The ensemble uses object models with extreme parameter values. The disadvantages of this method are too many systems that need to be modeled and optimized at the same time if there are several parameters to be changed. In addition, the worst combination of model parameters may not be boundary, but middle, in this case this method is not applicable. This article offers and analyzes an alternative method of designing a robust controller on a numerical example. The essence of this method is the numerical optimization of the regulator for the model with the worst combination of the values of all modifiable parameters. The search for the worst combination of parameters is also carried out using the method of numerical optimization. In this case, a combination of model parameters is found in which the best relation of regulator coefficients gives the worst result of the system. The problem is solved in several optimization cycles with alternating cost functions. The utility of the method is illustrated numerically by an example of a third order dynamic object with a series linked delay element.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zou, Daming, Yuchen Gu, Yuanfeng Shi, MingZhe Wang, Yingfei Xiong, and Zhendong Su. "Oracle-free repair synthesis for floating-point programs." Proceedings of the ACM on Programming Languages 6, OOPSLA2 (October 31, 2022): 957–85. http://dx.doi.org/10.1145/3563322.

Повний текст джерела
Анотація:
The floating-point representation provides widely-used data types (such as “float” and “double”) for modern numerical software. Numerical errors are inherent due to floating-point’s approximate nature, and pose an important, well-known challenge. It is nontrivial to fix/repair numerical code to reduce numerical errors — it requires either numerical expertise (for manual fixing) or high-precision oracles (for automatic repair); both are difficult requirements. To tackle this challenge, this paper introduces a principled dynamic approach that is fully automated and oracle-free for effectively repairing floating-point errors. The key of our approach is the novel notion of micro-structure that characterizes structural patterns of floating-point errors. We leverage micro-structures’ statistical information on floating-point errors to effectively guide repair synthesis and validation. Compared with existing state-of-the-art repair approaches, our work is fully automatic and has the distinctive benefit of not relying on the difficult to obtain high-precision oracles. Evaluation results on 36 commonly-used numerical programs show that our approach is highly efficient and effective: (1) it is able to synthesize repairs instantaneously, and (2) versus the original programs, the repaired programs have orders of magnitude smaller floating-point errors, while having faster runtime performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Dumitriu, Mădălina. "Numerical Synthesis of the Track Alignment and Applications. Part I: The Synthesis Method." Transport Problems 11, no. 1 (2016): 19–28. http://dx.doi.org/10.20858/tp.2016.11.1.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Li, Yudong, and Ramana Reddy. "Experimental and Numerical Investigation of Thermal Plasma Synthesis of Silicon." Journal for Manufacturing Science and Production 15, no. 4 (December 1, 2015): 345–54. http://dx.doi.org/10.1515/jmsp-2015-0023.

Повний текст джерела
Анотація:
AbstractExperimental and numerical investigations were carried out on synthesis of Si from SiO2 using thermal plasma reactor. Temperature profile and gas flow distribution in the thermal plasma reactor were developed by the computational fluid dynamics (CFD) with ANSYS Fluent. The predicted temperatures are in good agreement with the experimentally measured temperatures in the reactor. Experiments were carried out at power 22.5 kw, SiO2 feed rate of 4 g/min, molar ratio of SiO2 to methane varied from 1 to 4:1. Samples from different sections of the reactor are collected and characterized using SEM and XRD. Effect of molar ratio of SiO2 to methane on the yield of Si showed that increase in molar ratio increased the Si yield. Based on the analysis of experimental and numerical results, a mechanism of thermal plasma synthesis of Si from SiO2 is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Jahn, Wolfram, Frane Sazunic, and Carlos Sing-Long. "Towards real-time fire data synthesis using numerical simulations." Journal of Fire Sciences 39, no. 3 (April 16, 2021): 224–39. http://dx.doi.org/10.1177/0734904121993449.

Повний текст джерела
Анотація:
Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Veremei, E. I., and Ya M. Bokova. "Numerical Aspects of Spectral Method of H∞-optimal Synthesis." Journal of Automation and Information Sciences 28, no. 5-6 (1996): 1–12. http://dx.doi.org/10.1615/jautomatinfscien.v28.i5-6.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Egorov, Yu G., G. Yu Kiryachenko, and E. A. Popov. "Numerical Methods of Suboptimal Programs Synthesis for Accelerometer Unit." Gyroscopy and Navigation 12, no. 2 (April 2021): 147–54. http://dx.doi.org/10.1134/s2075108721020036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mansouri, M., B. Radi, and A. El Hami. "Numerical simulation of vibroacoustic problems by the modal synthesis." Advances in Theoretical and Applied Mechanics 6 (2013): 1–12. http://dx.doi.org/10.12988/atam.2013.21237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kundrapu, M., and M. Keidar. "Numerical simulation of carbon arc discharge for nanoparticle synthesis." Physics of Plasmas 19, no. 7 (July 2012): 073510. http://dx.doi.org/10.1063/1.4737153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ahmad Termizi, S. N. A., C. Y. Khor, M. A. M. Nawi, Nur Syafiqah Binti Mohd Aris, Muhammad Ikman Ishak, and M. U. Rosli. "Numerical Simulation of Biodiesel Synthesis in T- Channel Microreactor." IOP Conference Series: Materials Science and Engineering 864 (July 10, 2020): 012191. http://dx.doi.org/10.1088/1757-899x/864/1/012191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Tennant, A. "Numerical pattern synthesis of difference beams in conformal arrays." Electronics Letters 31, no. 12 (June 8, 1995): 938–39. http://dx.doi.org/10.1049/el:19950681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kolosov, G. Ye. "Numerical Synthesis of Optimal Control for Some Stochastic Systems." IFAC Proceedings Volumes 19, no. 5 (May 1986): 399–404. http://dx.doi.org/10.1016/s1474-6670(17)59831-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Blanchini, F., and S. Miani. "Numerical computation of polyhedral lyapunov functions for robust synthesis." IFAC Proceedings Volumes 32, no. 2 (July 1999): 2065–70. http://dx.doi.org/10.1016/s1474-6670(17)56350-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Yu, Mingzhou, Jianzhong Lin, and Tatleung Chan. "Numerical simulation of nanoparticle synthesis in diffusion flame reactor." Powder Technology 181, no. 1 (January 2008): 9–20. http://dx.doi.org/10.1016/j.powtec.2007.03.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Matsui, Yasuji, Hideki Yabe, and Yoichi Hirose. "The numerical simulation of diamond synthesis from acetylene flames." Diamond and Related Materials 2, no. 1 (February 1993): 7–13. http://dx.doi.org/10.1016/0925-9635(93)90135-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bourquin, Frédéric, and Frédéric d'Hennezel. "Numerical study of an intrinsic component mode synthesis method." Computer Methods in Applied Mechanics and Engineering 97, no. 1 (May 1992): 49–76. http://dx.doi.org/10.1016/0045-7825(92)90107-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Belai, O. V., L. L. Frumin, E. V. Podivilov, and D. A. Shapiro. "Efficient numerical method of the fiber Bragg grating synthesis." Journal of the Optical Society of America B 24, no. 7 (June 15, 2007): 1451. http://dx.doi.org/10.1364/josab.24.001451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dahlgren, Björn, Maria Antonietta Sabatino, Clelia Dispenza, and Mats Jonsson. "Numerical Simulations of Nanogel Synthesis Using Pulsed Electron Beam." Macromolecular Theory and Simulations 29, no. 1 (October 21, 2019): 1900046. http://dx.doi.org/10.1002/mats.201900046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Li, H. P., and J. A. Sekhar. "Numerical analysis for micropyretic synthesis of NiAl intermetallic compound." Journal of Materials Science 30, no. 18 (1995): 4628–36. http://dx.doi.org/10.1007/bf01153072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kumar, Satish, and Sashikumaar Ganesan. "Numerical simulation of nanocrystal synthesis in a microfluidic reactor." Computers & Chemical Engineering 96 (January 2017): 128–38. http://dx.doi.org/10.1016/j.compchemeng.2016.10.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Girshick, S. L., and Chia-Pin Chiu. "Numerical study of MgO powder synthesis by thermal plasma." Journal of Aerosol Science 21, no. 5 (January 1990): 641–50. http://dx.doi.org/10.1016/0021-8502(90)90119-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Mandal, Monisha Mridha, Christophe Serra, Yannick Hoarau, and K. D. P. Nigam. "Numerical modeling of polystyrene synthesis in coiled flow inverter." Microfluidics and Nanofluidics 10, no. 2 (August 3, 2010): 415–23. http://dx.doi.org/10.1007/s10404-010-0679-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

James, P. A., and B. Roth. "A Unified Theory for Kinematic Synthesis." Journal of Mechanical Design 116, no. 1 (March 1, 1994): 144–54. http://dx.doi.org/10.1115/1.2919338.

Повний текст джерела
Анотація:
In this paper we derive an analytic method for obtaining infinitesimal kinematic synthesis results as a limiting process from finitely-separated position kinematics. Expanding on previous work, we extend the unified theory to include spatial kinematic synthesis and we present a new numerical method. The new methods serve to unity finite, infinitesimal, and hybrid kinematic synthesis into one theory for kinematic synthesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Zhang, Yangsheng, and Gregory C. Stangle. "A micromechanistic model of the combustion synthesis process: Part II. Numerical simulation." Journal of Materials Research 9, no. 10 (October 1994): 2605–19. http://dx.doi.org/10.1557/jmr.1994.2605.

Повний текст джерела
Анотація:
A series of computer experiments was conducted for the self-propagating combustion synthesis process in the Nb-C system, based on the general theoretical model that was developed previously.1 A detailed and quantitative description was given for the various physical and chemical processes that take place during the combustion synthesis process. The results are presented at various length scales in order to provide an insight into understanding the mechanisms that are responsible for the self-propagating behavior. It was shown that a fundamental understanding and precise control of the process require a strong emphasis on the joint contributions of the rates of the various mass and energy redistribution processes that occur during the combustion synthesis process. A proper balance of each of the elementary process rates must be achieved to give rise to self-propagating behavior. This paper illustrates some of the capabilities of the general theoretical model in quantitatively describing the self-propagating combustion synthesis process.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

PANELLA, MASSIMO, ANTONELLO RIZZI, FABIO MASSIMO FRATTALE MASCIOLI, and GIUSEPPE MARTINELLI. "FROM CIRCUITS TO NEUROFUZZY NETWORKS: SYNTHESIS BY NUMERICAL AND LINGUISTIC INFORMATION." Journal of Circuits, Systems and Computers 13, no. 01 (February 2004): 205–36. http://dx.doi.org/10.1142/s0218126604001258.

Повний текст джерела
Анотація:
Neurofuzzy networks allow to directly manipulate the information concerning the realization of a required input–output mapping. They constitute an important sector of the emerging field of Intelligent Signal Processing. In the present paper a comparison is firstly carried out between the neurofuzzy and the circuit approaches, taking into account that traditionally the latter plays the same role as the former with respect to signal processing. In the case of neurofuzzy networks, the mapping of interest is described by numerical examples and by linguistic sentences regarding its properties, as given by experts on the basis of their experience. This information is manipulated by neurofuzzy networks on the basis of fuzzy logic. After a short survey of the basic ingredients of a neurofuzzy network, two representative architectures and several synthesis procedures are proposed. Traditional synthesis methods cannot be applied for pursuing numerical information and are consequently replaced by clustering algorithms. The linguistic information, on the contrary, can be directly incorporated in the network architecture, as it is given by the experts. As a consequence, the neurofuzzy networks partially mimic humans in facing the task to be accomplished. Detailed examples are presented for illustrating the proposed architectures and synthesis procedures.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Pazoev, A. L. "Main limitations in the synthesis of digital holograms of 3D images." Interexpo GEO-Siberia 8, no. 1 (May 18, 2022): 117–25. http://dx.doi.org/10.33764/2618-981x-2022-8-1-117-125.

Повний текст джерела
Анотація:
Problems of digital synthesis of holograms of 3D objects are discussed. The problem of using fast Fourier transform (FFT) in the synthesis of a remote object is numerically shown. A method for implementing a direct numerical Fresnel transformation based on the use of spatial symmetries of the Fresnel transformation kernel as the main element of calculations is offered. Its promising possibilities are discussed. An example of calculating a hologram of a 3D image and its restoration is given. At the moment, a program for the synthesis of holograms by direct integral transformation without the use of FFT has been developed, with the help of which the time for the synthesis of holograms is reduced more than four times. The prospects of this method are shown, which make it possible to reduce the time of direct synthesis of holograms of 3D objects by an order of magnitude or more.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Li, Yong Gang, Yang Dong Hu, Lian Ying Wu, and Hong Li. "Numerical Simulation Analysis of Temperature Field on Silicon Carbide Synthesis Furnace." Materials Science Forum 686 (June 2011): 494–500. http://dx.doi.org/10.4028/www.scientific.net/msf.686.494.

Повний текст джерела
Анотація:
Based on heat percolation theory and thermal coefficient equation of various layer-compositors, the effective thermal conductivity of silicone carbide(SiC)synthetic material was obtained, and the effective heat capacity under the complicated thermal effect in the process of raising temperature figured out in the present investigation. Based on the experimental results and using the finite element numerical model of nonlinear dynamic heat transfer process, the temperature field in SiC synthesis furnace was simulated by open source finite element software-FECsoft. And the dynamic laws of temperature distribution and thermal gradient of the furnace, the relation between the furnace core’s temperature and the energy consumption and output were obtained. Based on the above analysis, some measures to save energy and increasing output of the silicon carbide synthesis furnace were proposed in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Aleksandrov, V. M. "Sequential synthesis of time-optimal control for linear systems with disturbances." Numerical Analysis and Applications 1, no. 3 (July 2008): 207–22. http://dx.doi.org/10.1134/s1995423908030026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Monakhov, O. G., and E. A. Monakhova. "A parallel algorithm of multi-variant evolutionary synthesis of nonlinear models." Numerical Analysis and Applications 10, no. 2 (April 2017): 140–48. http://dx.doi.org/10.1134/s1995423917020057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Monakhov, O. G., and E. A. Monakhova. "Development of a Metaheuristic Programming Method for Synthesis of Nonlinear Models." Numerical Analysis and Applications 13, no. 4 (October 2020): 349–59. http://dx.doi.org/10.1134/s1995423920040059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wen, Zhuqing, and Jerzy Petera. "CFD Numerical Simulation of Biodiesel Synthesis in a Spinning Disc Reactor." Chemical and Process Engineering 36, no. 1 (March 1, 2015): 21–37. http://dx.doi.org/10.1515/cpe-2015-0002.

Повний текст джерела
Анотація:
Abstract In this paper a two-disc spinning disc reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat discs, located coaxially and parallel to each other with a gap of 0.2 mm between the discs. The upper disc is located on a rotating shaft while the lower disc is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the centre line of rotating disc and stationary disc. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effect of the upper disc’s spinning speed is evaluated. The results show that the rotational speed increase causes an increase of TG conversion despite the fact that the residence time decreases. Compared to data obtained from adequate experiments, the model shows a satisfactory agreement.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії