Добірка наукової літератури з теми "Numerical anlysis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Numerical anlysis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Numerical anlysis"
SHUAI, Cijun. "Numerical anlysis and experimental research in rheological manfacturing process of fibre devices." Chinese Journal of Mechanical Engineering 43, no. 07 (2007): 75. http://dx.doi.org/10.3901/jme.2007.07.075.
Повний текст джерелаWang, Jinling, Guangwen Jiang, Jun Shen, and Chujun Hu. "Impact Anlysis of Bow Flap on LHA-1 Ship Airwake." MATEC Web of Conferences 179 (2018): 03007. http://dx.doi.org/10.1051/matecconf/201817903007.
Повний текст джерелаSliwa, Agata, Dariusz Gros, Andrei Victor Sandu, and Marcin Nabialek. "Optimization and Numerical Anlysis of Mechanical Properties of Connecting Rod in the Internal Combustion Engine." Revista de Chimie 69, no. 10 (November 15, 2018): 2813–15. http://dx.doi.org/10.37358/rc.18.10.6630.
Повний текст джерелаHou, Wei, Qing Xuan Shi, and Zhi Lin Ma. "Seismic Behavior Analysis on Reinforced Concrete Core Walls Based on Fiber Model." Advanced Materials Research 163-167 (December 2010): 1068–73. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1068.
Повний текст джерелаLi, Kun, and Qing Xuan Shi. "Nonlinear Analysis of Reinforced Concrete Core Walls Based on Three-Vertical-Line-Element Model." Advanced Materials Research 255-260 (May 2011): 1959–63. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1959.
Повний текст джерелаDu, You Fu, Chu Yang Chen, and Xiang Na Li. "Time-Domain Simulation of High-Speed Railway Track Irregularity." Applied Mechanics and Materials 587-589 (July 2014): 1039–42. http://dx.doi.org/10.4028/www.scientific.net/amm.587-589.1039.
Повний текст джерелаSaenger, Erik H., and Thomas Bohlen. "Finite‐difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid." GEOPHYSICS 69, no. 2 (March 2004): 583–91. http://dx.doi.org/10.1190/1.1707078.
Повний текст джерелаSomé, Windjiré, Germain Kaboré, Kassiénou Lamien, Ismaël Diallo, Ousséni So, and Blaise Somé. "Mathematical Modeling of COVID-19 with Chronic Patients and Sensitivity Analysis." International Journal of Systems Science and Applied Mathematics 9, no. 1 (May 9, 2024): 9–19. http://dx.doi.org/10.11648/j.ijssam.20240901.12.
Повний текст джерелаYuan, Ping, and Hui Yue Dong. "Numerical Simulation for the Milling of Alluminum Alloy Thin-Wall Workpiece with Two and Four Flutes Helical Cutter." Applied Mechanics and Materials 34-35 (October 2010): 1870–75. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1870.
Повний текст джерелаDuc, Bui Van, Nguyen Van Manh, and Piotr Osinski. "Improvement of an existing building shallow foundation using soil nails supported retaining wall: A numerical assessment." E3S Web of Conferences 405 (2023): 01010. http://dx.doi.org/10.1051/e3sconf/202340501010.
Повний текст джерелаДисертації з теми "Numerical anlysis"
Hübbe, Guilherme Bez Batti. "Numerical and experimental anlysis of a high lifting airfoil at low Reynolds number flows." reponame:Repositório Institucional da UFSC, 2017. https://repositorio.ufsc.br/xmlui/handle/123456789/182906.
Повний текст джерелаMade available in DSpace on 2018-01-30T03:20:50Z (GMT). No. of bitstreams: 1 349588.pdf: 4625385 bytes, checksum: dc1dca352ea0ffce13b4320754881721 (MD5) Previous issue date: 2017
A análise e desenvolvimento de perfis aerodinâmicos para operação em baixas velocidades têm ganhado importância recentemente devido à crescente utilização de VANTs (Veículos Aéreos Não Tripulados) e turbinas eólicas. Nessas aplicações, o número de Reynolds característico para o escoamento sobre a asa pode ser inferior a 3·105 e o escoamento pode sofrer separação na região laminar da camada limite, formando o que se conhece por bolhas de separação laminar. O principal objetivo deste trabalho é avaliar o comportamento das bolhas de separação laminar em um perfil aerodinâmico de alta sustentação por meio de simulações numéricas suportadas por medições em túnel de vento. Inicialmente, apresenta-se uma comparação entre os resultados previstos por quatro modelos de turbulência, sendo dois para escoamentos totalmente turbulentos (Spalart-Allmaras e SST k-?), e dois para escoamentos de transição (?-Re? e k-kL-?), usando o software FLUENT. Os modelos foram aplicados a um perfil Eppler 387, que foi escolhido por apresentar dados experimentais disponíveis e medidos em diferentes laboratórios, e a um perfil Selig 1223, por ser um perfil de alta sustentação e utilizado em aeronaves de baixa velocidade. Os resultados indicaram que, embora seja possível prever a evolução do coeficiente de sustentação para baixos ângulos de ataque usando qualquer um dos modelos, apenas os modelos de transição foram capazes de prever o surgimento da bolha de separação laminar, resultando em grandes diferenças no coeficiente de sustentação próximo ao ângulo de estol. Essas diferenças se tornaram particularmente relevantes para o perfil Selig 1223, que apresentou um ganho na sustentação máxima de 20 % movendo do Reynolds de 1·105 para 2·105. Em relação ao coeficiente de arrasto, os modelos de transição apresentaram uma diferença média de 10 % em relação às referências, enquanto que nos outros, essa diferença chegou a 40 % em alguns ângulos. Na sequência do trabalho, fabricou-se um perfil Selig 1223 instrumentado com tomadas de pressão em sua superfície, para medição do coeficiente de pressão ao longo de sua corda. Para visualizar o local da bolha de separação laminar, foi utilizado um óleo pigmentado. Os resultados mostraram boa concordância na previsão do coeficiente de pressão utilizando os modelos de transição e a observação com filme de óleo comprovou a posição e extensão da bolha de separação. Concluiu-se que a separação do escoamento na camada limite laminar foi a principal causa de estol no número de Reynolds de 1·105. Finalmente, estudou-se a possibilidade de eliminação da separação em regime laminar através da adição de um tubo de carbono à frente do bordo de ataque. Experimentalmente, verificou-se que, com a aplicação dessa técnica, o ângulo de estol em número de Reynolds de 1·105 aumentou de 10° para 20°. A técnica da visualização com óleo mostrou que a bolha é eliminada com o emprego do gerador de turbulência. Os modelos de transição forneceram boa comparação com as medições, sendo recomendado o seu uso nessas aplicações.
Abstract : The development and analysis of airfoils for low-speed operations have recently become important because of their vast use in UAVs (Unmanned Aerial Vehicle) and wind turbines. In these applications, the characteristic Reynolds number for the flow over the wing may be as low as 3·105 and separation may occur in the laminar region of the boundary layer, forming the so-called laminar separation bubbles (LSB). The main objective of this work is to evaluate the behavior of the LSBs in a high lifting airfoil by means of numerical simulations supported by measurements in wind tunnel. Primarily, a comparison of four turbulence models is given: two for fully-turbulent flows (Spalart-Allmaras e SST k-?), and two for transitional flows (?-Re? e k-kL-?), using FLUENT software. The models were initially used in an Eppler 387 airfoil, which was chosen due to the availability of experimental data obtained in different laboratories, and then in a Selig 1223, because it is a high lifting airfoil and used in low-speed aircrafts. Results indicated that, although it is possible to predict the development of the lift coefficient for low angles of attack using anyone of the models, only the transition-sensitive models were capable of predicting the LSBs, which resulted in large differences of the lift coefficient close to the region of stall. These differences became relevant for the S1223 airfoil, which presented a maximum lift coefficient difference of 20 % when comparing the Reynolds number cases of 1·105 and 2·105. Regarding drag coefficient in comparison to the references, transition-sensitive models showed an average difference of 10 %. Fully-turbulent models achieved maximum difference of 40 %. Following the work, a Selig 1223 wing was manufactured with pressure tapping holes on the surface to measure the pressure coefficient over it chord. In order to visualize the location of the laminar separation bubble, a pigmented oil was used. Results reported good agreement in predicting the pressure coefficient using the transition-sensitive models and the observations with oil film proved the position and extension of the LSBs. It was concluded that the separation in the laminar boundary layer was the main cause of stall in the Reynolds number of 1·105. Finally, it was considered the possibility of suppressing the laminar separation by installing a carbon fiber tube in front of the leading edge. Experimentally, it was verified that this technique provided an increase in the angle of stall from 10° to 20° at a Reynold number of 1·105. The oil visualization technique showed that the bubble is suppressed with the use of the turbulence generator. Altogether, transition-sensitive models provided results in better agreement with the experimental data. Their use is recommended in these applications.
Laidin, Tino. "Méthodes numériques hybrides cinétique/fluide et préservant la structure pour des équations cinétiques collisionnelles." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILB019.
Повний текст джерелаThis thesis focuses on the development and analysis of efficient numerical methods for approximating solutions of potentially nonlinear kinetic collisional equations. These equations arise in various fields such as physics, notably in the study of semiconductors and gas dynamics. They also appear in biology in modeling the movement of cells within tissue. These models exhibit a multiscale aspect where there is, on one hand, a mesoscopic (or kinetic) description that gives the evolution of the distribution function of particles, molecules, or cells. On the other hand, through a process of averaging, we obtain the so-called macroscopic (or fluid) scale which allows to track the evolution of observable physical quantities: the moments of the distribution function. These moments correspond to the density, average velocity, and temperature of the considered particles. Throughout this manuscript, we present various ways to take advantage of fluid dynamics to construct and study efficient numerical methods for the kinetic scale.In the first part, we explore discretization methods aiming to preserve the structure of continuous equations. We begin by introducing an implicit finite volume scheme for a nonlinear reaction kinetic model. We study the long-time behavior of the discrete solution using hypocoercivity methods. Then, we examine a spectral method, based on general orthogonal polynomials, capable of preserving the moments of the solution while ensuring good convergence properties.The second part is dedicated to the design of numerical methods aiming to reduce the cost of kinetic simulations. To do this, we study two approaches exploiting the evolution of the unknown's moments. The first, a hybrid kinetic/fluid method, involves adopting dynamically and locally in position a less costly fluid description of the system instead of the more expensive kinetic one. The second approach also relies on the use of a fluid model, but this time to accelerate the temporal iterations of the method. Here, we propose a prototype of a multiscale parareal method, using a fluid model as a coarse solver and a kinetic model as a fine solver
Тези доповідей конференцій з теми "Numerical anlysis"
Weili Li, Chengyu Song, Junci Cao, and Liyi Li. "Numerical anlysis of axial-radial flux type fully superconducting synchronous motor." In 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2010). IEEE, 2010. http://dx.doi.org/10.1109/cefc.2010.5481425.
Повний текст джерелаWang, Haoming, Qingxin Yang, Yongjian Li, Jianmin Wang, Dongdong Yuan, and Mingfang Hu. "Numerical Anlysis of Electromagnetic Characteristic of Several Parallel Coils For High Current Transformer." In 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2018. http://dx.doi.org/10.1109/asemd.2018.8559008.
Повний текст джерелаFrischbier, J., G. Schulze, M. Zielinski, G. Ziller, C. Blaha, and D. K. Hennecke. "Blade Vibrations of a High Speed Compressor Blisk-Rotor: Numerical Resonance Tuning and Optical Measurements." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-024.
Повний текст джерелаChen, Changping, Yejie Jiang, and Liming Dai. "Nonlinear Dynamic Analysis of an Electrically Actuated Piezoelectric Laminated Microbeam With the Effect of AC." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37029.
Повний текст джерелаTiwari, Chandni, Varun Mishra, and G. Sharath Chandra Reddy. "Performance Anlysis of i-Ch3Nh3SnI3 Perovskite Solar Cell Using Numerical Technique." In 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN). IEEE, 2023. http://dx.doi.org/10.1109/cictn57981.2023.10141468.
Повний текст джерела