Книги з теми "Ntegral equation for the non"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Ntegral equation for the non.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 книг для дослідження на тему "Ntegral equation for the non".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Stiller, Wolfgang. Arrhenius Equation and Non-Equilibrium Kinectics: 100 Years Arrhenius Equation. Leipzig: B.G.Teubner Verlagsgesellschaft, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wolfgang, Stiller. Arrhenius equation and non-equilibrium kinetics: 100 years Arrhenius equation. Leipzig: BSB B.G. Teubner, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abarbanel, Saul. Non-reflecting boundary conditions for the compressible Navier-Stokes equations. Hampton, Va: Langley Research Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Michelassi, V. Solution of the steady state incompressible Navier-Stokes equations in curvilinear non orthogonal coordinates. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A non-equilibrium statistical mechanics: Without the assumption of molecular chaos. River Edge, N.J: World Scientific, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Tian-Quan. A non-equilibrium statistical mechanics: Without the assumption of molecular chaos. Singapore: World Scientific, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shuen, Jian-Shun. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds. Washington, D. C: American Institute of Aeronautics and Astronautics, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jonsson, Fan Yang. Non-linear structural equation models: Simulation studies of the Kenny-Judd model. Uppsala, Sweden: Uppsala University, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gutlyanskii, Vladimir. The Beltrami Equation: A Geometric Approach. New York, NY: Springer New York, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Osher, Stanley J. High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Osher, Stanley. High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Osher, Stanley. High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tidriri, M. D. Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lin, Kenneth Shang-Kai. Private consumption, non-traded goods and real exchange rate: A cointegration-Euler equation approach. Cambridge, MA: National Bureau of Economic Research, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sulem, C. The nonlinear Schrödinger equation: Self-focusing and wave collapse. New York: Springer, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Triantafyllos, Ioannis. Implementation of a non-linear low-re two equation model into a compressible Navier-Stokescode. Manchester: UMIST, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Fong, Anthony R. M. K. Application of a three-equation non-linear eddy viscosity model to jet impingement on hemispherical surfaces. Manchester: UMIST, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Morano, Eric. Looking for O(N) Navier-Stokes solutions on non-structured meshes. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bidegaray-Fesquet, Brigitte. Hiérarchie de modèles en optique quantique: De Maxwell-Bloch à Schr̈odinger non-linéaire. Berlin: Springer, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tobey, Patricia Elaine. Cognitive and non-cognitive factors as predictors of retention among academically at-risk college students: A structural equation modeling approach. Los Angeles, CA: University of Southern California, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Perron, Ronald Donald. Development of an equation for the uniaxial compressive strength of cemented paste mineral materials containing reactive and non-reactive fines. Sudbury, Ont: Laurentian University Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Danowitz, Jeffrey S. A far-field non-reflecting boundary condition for two-dimensional wake flows. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gagneux, Gérard. Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Berlin: Springer-Verlag, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Numerical analysis of parametrized nonlinear equations. New York: Wiley, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chaim, Gutfinger, ed. Fluid mechanics. Cambridge: Cambridge University Press, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.

Повний текст джерела
Анотація:
The textbook corresponds to the general education programs of the general courses "Hydraulics" and "Fluid Mechanics". The basic physical properties of liquids, gases, and their mixtures, including the quantum nature of viscosity in a liquid, are described; the laws of hydrostatics, their observation in natural phenomena, and their application in engineering are described. The fundamentals of the kinematics and dynamics of an incompressible fluid are given; original examples of the application of the Bernoulli equation are given. The modes of fluid motion are supplemented by the features of the transient flow mode at high local resistances. The basics of flow similarity are shown. Laminar and turbulent modes of motion in pipes are described, and the classification of flows from a creeping current to four types of hypersonic flow around the body is given. The coefficients of nonuniformity of momentum and kinetic energy for several flows of Newtonian and non-Newtonian fluids are calculated. Examples of solving problems of transient flows by hydraulic methods are given. Local hydraulic resistances, their use in measuring equipment and industry, hydraulic shock, polytropic flow of gas in the pipe and its outflow from the tank are considered. The characteristics of different types of pumps, their advantages and disadvantages, and ways of adjustment are described. A brief biography of the scientists mentioned in the textbook is given, and their contribution to the development of the theory of hydroaeromechanics is shown. The four appendices can be used as a reference to the main text, as well as a subject index. Meets the requirements of the federal state educational standards of higher education of the latest generation. For students of higher educational institutions who study full-time, part-time, evening, distance learning forms of technological and mechanical specialties belonging to the group "Food Technology".
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Escudier, Marcel. Bernoulli’s equation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0007.

Повний текст джерела
Анотація:
In this chapter Newton’s second law of motion is used to derive Euler’s equation for the flow of an inviscid fluid along a streamline. For a fluid of constant density ρ‎ Euler’s equation can be integrated to yield Bernoulli’s equation: p + ρ‎gz′ + ρ‎V2 = pT which shows that the sum of the static pressure p, the hydrostatic pressure ρ‎gz and the dynamic pressure ρ‎V2/2 is equal to the total pressure pT. The combination p + ρ‎V2/2 is an important quantity known as the stagnation pressure. Each of the terms on the left-hand side of Bernoulli’s equation can be regarded as representing different forms of mechanical energy and also equivalent to the hydrostatic pressure due to a vertical column of liquid. The dynamic pressure can be thought of as measuring the intensity or strength of a flow and is frequently combined with other fluid and flow properties to produce non-dimensional (or dimensionless) numbers which characterise various aspects of fluid motion.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

The Beltrami Equation (Memoirs of the American Mathematical Society). Amer Mathematical Society, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Chung, Dean, and Rebecca Rapoport. Mathematics 2019 : Your Daily Epsilon of Math: 12-Month Calendar Featuring a Math Equation a Day. Quarto Publishing Group USA, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Horing, Norman J. Morgenstern. Q. M. Pictures; Heisenberg Equation; Linear Response; Superoperators and Non-Markovian Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0003.

Повний текст джерела
Анотація:
Three fundamental and equivalent mathematical frameworks (“pictures”) in which quantum theory can be lodged are exhibited and their relations and relative advantages/disadvantages are discussed: (1) The Schrödinger picture considers the dynamical development of the overall system state vector as a function of time relative to a fixed complete set of time-independent basis eigenstates; (2) The Heisenberg picture (convenient for the use of Green’s functions) embeds the dynamical development of the system in a time-dependent counter-rotation of the complete set of basis eigenstates relative to the fixed, time-independent overall system state, so that the relation of the latter fixed system state to the counter-rotating basis eigenstates is identically the same in the Heisenberg picture as it is in the Schrödinger picture; (3) the Interaction Picture addresses the situation in which a Hamiltonian, H=H0+H1, involves a part H0 whose equations are relatively easy to solve and a more complicated part, H1, treated perturbatively. The Heisenberg equation of motion for operators is discussed, and is applied to annihilation and creation operators. The S-matrix, density matrix and von Neumann equation, along with superoperators and non-Markovian kinetic equations are also addressed (e.g. the intracollisional field effect).
Стилі APA, Harvard, Vancouver, ISO та ін.
36

The Beltrami Equation: A Geometric Approach. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Gutlyanskii, Vladimir, Vladimir Ryazanov, Uri Srebro, and Eduard Yakubov. The Beltrami Equation: A Geometric Approach. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases. Hampton, VA: ICASE, NASA Langley Research Center, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Succi, Sauro. The Lattice Boltzmann Equation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.001.0001.

Повний текст джерела
Анотація:
Over the past near three decades, the Lattice Boltzmann method has gained a prominent role as an efficient computational method for the numerical simulation of a wide variety of complex states of flowing matter across a broad range of scales, from fully developed turbulence, to multiphase micro-flows, all the way down to nano-biofluidics and lately, even quantum-relativistic subnuclear fluids. After providing a self-contained introduction to the kinetic theory of fluids and a thorough account of its transcription to the lattice framework, this book presents a survey of the major developments which have led to the impressive growth of the Lattice Boltzmann across most walks of fluid dynamics and its interfaces with allied disciplines, such as statistical physics, material science, soft matter and biology. This includes recent developments of Lattice Boltzmann methods for non-ideal fluids, micro- and nanofluidic flows with suspended bodies of assorted nature and extensions to strong non-equilibrium flows beyond the realm of continuum fluid mechanics. In the final part, the book also presents the extension of the Lattice Boltzmann method to quantum and relativistic fluids, in an attempt to match the major surge of interest spurred by recent developments in the area of strongly interacting holographic fluids, such as quark-gluon plasmas and electron flows in graphene. It is hoped that this book may provide a source information and possibly inspiration to a broad audience of scientists dealing with the physics of classical and quantum flowing matter across many scales of motion.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

M, Greco Antonio, Ruggeri Tommaso, Boillat G, and Circolo matematico di Palermo, eds. Non linear hyperbolic fields and waves: A tribute to Guy Boillat. Palermo: Sede della Società, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

1963-, Bramanti Marco, ed. Non-divergence equations structured on Hörmander vector fields: Heat kernels and Harnack inequalities. Providence, R.I: American Mathematical Society, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Elcio, Abdalla, ed. 2D-gravity in non-critical strings: Discrete and continuum approaches. Berlin: Springer-Verlag, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Abdalla, Elcio. 2d-Gravity in Non-Critical Strings: Discrete and Continuum Approaches (Planetology). Springer, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

1949-, Dervieux A., and Langley Research Center, eds. Looking for O(N) Navier-Stokes solutions on non-structured meshes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

1949-, Dervieux A., and Langley Research Center, eds. Looking for O(N) Navier-Stokes solutions on non-structured meshes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

1949-, Dervieux A., and Langley Research Center, eds. Looking for O(N) Navier-Stokes solutions on non-structured meshes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Bartolomeo, Jerry. Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls. 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ed, Nelson, and United States. National Aeronautics and Space Administration., eds. Comparison of 3D computation and experiment for non-axisymmetric nozzles. [Washington, D.C.]: National Aeronautics and Space Administration, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Reeves, John C., and Annette Yoshiko Reed. Enoch’s Association or Equation with Other Figures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198718413.003.0007.

Повний текст джерела
Анотація:
This chapter focuses upon collecting the numerous texts which posit an identification of the biblical character Enoch with other similarly endowed figures occurring in later Jewish, Christian, Muslim, and non-biblical traditions. These Enoch “avatars” include Jewish celestial entities like Metatron and the so-called “YHW(H) the lesser”; the qur’ānic prophet Idrīs; Graeco-Egyptian Hermes/Thoth and Hermes Trismegistus; and the Iranian epic hero Hōshang. Other assimilations which are explored include Enoch’s possible pre-biblical identity as a rival Flood-hero prior to the introduction of the character of Noah, and Enoch’s status in certain medieval Jewish writings as a reincarnation of Adam, the first human.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Abdalla, M. Cristina B., D. Dalmazi, A. Zadra, and Elcio Abdalla. 2D-Gravity in Non-Critical Strings: Discrete and Continuum Approaches (Lecture Notes in Physics New Series M). Springer, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії