Добірка наукової літератури з теми ""nor tomato mutant""
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему ""nor tomato mutant"".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми ""nor tomato mutant""
McGlasson, W. B., J. H. Last, K. J. Shaw, and S. K. Meldrum. "Influence of the Non-ripening Mutants rin and nor on the Aroma of Tomato Fruit." HortScience 22, no. 4 (August 1987): 632–34. http://dx.doi.org/10.21273/hortsci.22.4.632.
Повний текст джерелаGao, Ying, Wei Wei, Zhongqi Fan, Xiaodan Zhao, Yiping Zhang, Yuan Jing, Benzhong Zhu, et al. "Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening." Journal of Experimental Botany 71, no. 12 (April 27, 2020): 3560–74. http://dx.doi.org/10.1093/jxb/eraa131.
Повний текст джерелаBaldwin, E. A., and R. Pressey. "Tomato Polygalacturonase Elicits Ethylene Production in Tomato Fruit." Journal of the American Society for Horticultural Science 113, no. 1 (January 1988): 92–95. http://dx.doi.org/10.21273/jashs.113.1.92.
Повний текст джерелаKaup, Olaf, Ines Gräfen, Eva-Maria Zellermann, Rudolf Eichenlaub, and Karl-Heinz Gartemann. "Identification of a Tomatinase in the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382." Molecular Plant-Microbe Interactions® 18, no. 10 (October 2005): 1090–98. http://dx.doi.org/10.1094/mpmi-18-1090.
Повний текст джерелаGiovannoni, Jim. "659 Genetic Control of Fruit Quality and Prospects for Nutrient Modification." HortScience 35, no. 3 (June 2000): 512A—512. http://dx.doi.org/10.21273/hortsci.35.3.512a.
Повний текст джерелаPoma, Betsabé Antezana, Wilson Roberto Maluf, Beatriz Tome Gouveia, Alisson Marcel Souza de Oliveira, Rodolfo de Paula Duarte Ferreira, and Regis de Castro Carvalho. "Fruit color and post-harvest shelf life in tomato affected by the ogc, nor A, and rin alleles." Pesquisa Agropecuária Brasileira 52, no. 9 (September 2017): 743–50. http://dx.doi.org/10.1590/s0100-204x2017000900006.
Повний текст джерелаCvikic, Dejan, Jasmina Zdravkovic, Nenad Pavlovic, Sladjan Adzic, and Mladen Djordjevic. "Postharvest shelf life of tomato (Lycopersicon esculentum Mill.) mutanats (nor and rin) and their hybrids." Genetika 44, no. 3 (2012): 449–56. http://dx.doi.org/10.2298/gensr1203449c.
Повний текст джерелаWilson, M., H. L. Campbell, P. Ji, J. B. Jones, and D. A. Cuppels. "Biological Control of Bacterial Speck of Tomato Under Field Conditions at Several Locations in North America." Phytopathology® 92, no. 12 (December 2002): 1284–92. http://dx.doi.org/10.1094/phyto.2002.92.12.1284.
Повний текст джерелаBhattarai, Kishor K., Qi-Guang Xie, Sophie Mantelin, Usha Bishnoi, Thomas Girke, Duroy A. Navarre, and Isgouhi Kaloshian. "Tomato Susceptibility to Root-Knot Nematodes Requires an Intact Jasmonic Acid Signaling Pathway." Molecular Plant-Microbe Interactions® 21, no. 9 (September 2008): 1205–14. http://dx.doi.org/10.1094/mpmi-21-9-1205.
Повний текст джерелаXie, Qiaoli, Yanling Tian, Zongli Hu, Lincheng Zhang, Boyan Tang, Yunshu Wang, Jing Li, and Guoping Chen. "Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato (Solanum lycopersicum) Fruit Ripening Revealed by Integrative Proteomics and Phosphoproteomics." International Journal of Molecular Sciences 22, no. 21 (October 29, 2021): 11782. http://dx.doi.org/10.3390/ijms222111782.
Повний текст джерелаДисертації з теми ""nor tomato mutant""
D'INCA', ERICA. "MASTER REGULATORS OF THE VEGETATIVE-TO-MATURE ORGAN TRANSITION IN GRAPEVINE: THE ROLE OF NAC TRANSCRIPTION FACTORS." Doctoral thesis, 2017. http://hdl.handle.net/11562/961366.
Повний текст джерелаGrapevine is the most widely cultivated and economically important fruit crop in the world. Viticulture has been affected by the global warming currently under way over the past few decades (Webb et al., 2007). Improving the genetics of key grapevine functions is needed to keep producing high quality grapes and wine. In this context, a challenging task is to identify master regulators that program the development of grapevine organs and control transition from vegetative-to-mature growth featured by grape berries during the annual plant cycle. This transition, called véraison, is marked by profound biochemical, physiological and transcriptomic modifications that allow vegetative green berries to enter the ripening process. Thanks to an integrated network analysis performed on the grapevine global gene expression atlas and from a large berry transcriptomic data set (Massonnet, 2015; Palumbo et al., 2014; Fasoli et al., 2012) a new category of genes, called ‘switch’ genes, was identified; they were significantly up-regulated during the developmental shift and inversely correlated with many genes suppressed during the mature growth phase. Among them, plant-specific NAM/ATAF/CUC (NAC) transcription factors represent an interesting gene family due to their key role in the biological processes in plant development and stress responses (Jensen et al., 2014). Five NAC genes were selected for functional characterization as key factor candidates of the major transcriptome reprogramming during grapevine development. VvNAC11, VvNAC13, VvNAC33 and VvNAC60 were identified as ‘switch’ genes in the above-mentioned analysis whereas VvNAC03 was selected because it is a close homologue of tomato NOR (non-ripening), known for its crucial role in tomato fruit ripening regulation (Giovannoni, 2004; Giovannoni et al., 1995). Firstly, the five transcription factors were transiently over-expressed in Vitis vinifera to get an overview of their primary effects on native species. Secondly, we obtained grapevine plants that were stably transformed with VvNAC33 and VvNAC60 and subjected to molecular/phenotypic characterizations. VvNAC33 seemed to be involved in negative regulation of photosynthesis since over-expressing leaves revealed a chlorophyll breakdown, while VvNAC60 affected regular plant development, showing a slight growth and earlier stem lignification in comparison to a same-age plant control. These results reflected typical behaviors of plants undergoing ripening and senescence, thus supporting our working hypothesis proposing a crucial role of NACs in the transition from vegetative to mature development in grapevine. In order to identify downstream targets of the NAC transcription factors analyzed in this work, we performed microarray analysis on leaves of transient and stable ectopic expressing plants. We noted that both over-expressions affected a wide range of cellular processes and among the most represented functional categories we found transport, secondary metabolism and transcription factor activity. The identification of VvMYBA1, a known grapevine regulator of the anthocyanin biosynthetic pathway (Kobayashi et al., 2002), as VvNAC60 target suggests a VvNAC60 role in processes like anthocyanin biosynthesis featured by grape berries at the onset of ripening. Another approach used to clarify NACs roles was to check the ability of VvNACs to fulfil the tomato NOR function. Preliminary results revealed that VvNAC03 and VvNAC60 could partially complement the nor mutation in tomato, establishing a partial ripening phenotype in fruits. Taken together, these findings suggest the ability of the selected VvNACs to affect the expression of genes involved in the regulatory network that controls the developmental shift to a mature phase in grapevine. This work has shed some light on the roles of these NACs in grapevine development, but further analysis must be conducted to fully elucidate the molecular machinery in this complex regulation system.
"Genetic-Physiological studies of the tomato mutants alcobaça (alc), non-ripening (nor) e ripening-inhibitor (rin)." Tese, BIBLIOTECA CENTRAL DA UFLA, 2003. http://bibtede.ufla.br/tede//tde_busca/arquivo.php?codArquivo=520.
Повний текст джерелаЧастини книг з теми ""nor tomato mutant""
Bartoszewski, G., O. Fedorowicz, S. Malepszy, A. Smigocki, and K. Niemirowicz-Szczytt. "Unpredictable Phenotype Change Connected with Agrobacterium Tumefaciens Mediated Transformation of Non-Ripening Tomato Mutant." In Biology and Biotechnology of the Plant Hormone Ethylene II, 399–400. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4453-7_73.
Повний текст джерелаТези доповідей конференцій з теми ""nor tomato mutant""
Syrova, D. S., V. Y. Shakhnazarova, A. I. Shaposhnikov, A. A. Belimov, and Y. V. Gogolev. "The intensity of root colonization by phytopathogenic fungus and rhizobacterium depends on the genotype of tomatoes and abscisic acid." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.242.
Повний текст джерелаЗвіти організацій з теми ""nor tomato mutant""
Friedman, Haya, Julia Vrebalov, James Giovannoni, and Edna Pesis. Unravelling the Mode of Action of Ripening-Specific MADS-box Genes for Development of Tools to Improve Banana Fruit Shelf-life and Quality. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592116.bard.
Повний текст джерелаAntignus, Yehezkiel, Ernest Hiebert, Shlomo Cohen, and Susan Webb. Approaches for Studying the Interaction of Geminiviruses with Their Whitefly Vector Bemisia tabaci. United States Department of Agriculture, July 1995. http://dx.doi.org/10.32747/1995.7604928.bard.
Повний текст джерелаWagner, D. Ry, Eliezer Lifschitz, and Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, May 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Повний текст джерелаTadmor, Yaakov, Zachary Lippman, David Jackson, and Dani Zamir. three crops test for the ODO breeding method. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7594397.bard.
Повний текст джерелаLevin, Ilan, Avtar K. Handa, Avraham Lalazar, and Autar K. Mattoo. Modulating phytonutrient content in tomatoes combining engineered polyamine metabolism with photomorphogenic mutants. United States Department of Agriculture, December 2006. http://dx.doi.org/10.32747/2006.7587724.bard.
Повний текст джерелаLapidot, Moshe, Linda Hanley-Bowdoin, Jane E. Polston, and Moshe Reuveni. Geminivirus-resistant Tomato Plants: Combining Transgenic and Conventional Strategies for Multi-viral Resistance. United States Department of Agriculture, December 2010. http://dx.doi.org/10.32747/2010.7592639.bard.
Повний текст джерелаFriedmann, Michael, Charles J. Arntzen, and Hugh S. Mason. Expression of ETEC Enterotoxin in Tomato Fruit and Development of a Prototype Transgenic Tomato for Dissemination as an Oral Vaccine in Developing Countries. United States Department of Agriculture, March 2003. http://dx.doi.org/10.32747/2003.7585203.bard.
Повний текст джерелаManulis, Shulamit, Christine D. Smart, Isaac Barash, Guido Sessa, and Harvey C. Hoch. Molecular Interactions of Clavibacter michiganensis subsp. michiganensis with Tomato. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7697113.bard.
Повний текст джерелаKapulnik, Yoram, Maria J. Harrison, Hinanit Koltai, and Joseph Hershenhorn. Targeting of Strigolacatones Associated Pathways for Conferring Orobanche Resistant Traits in Tomato and Medicago. United States Department of Agriculture, July 2011. http://dx.doi.org/10.32747/2011.7593399.bard.
Повний текст джерелаRodriguez, Russell J., and Stanley Freeman. Gene Expression Patterns in Plants Colonized with Pathogenic and Non-pathogenic Gene Disruption Mutants of Colletotrichum. United States Department of Agriculture, February 2009. http://dx.doi.org/10.32747/2009.7592112.bard.
Повний текст джерела