Добірка наукової літератури з теми "Nonorientable Surfaces"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonorientable Surfaces".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nonorientable Surfaces"

1

Bujalance, J. A., and B. Estrada. "q-hyperelliptic compact nonorientable Klein surfaces without boundary." International Journal of Mathematics and Mathematical Sciences 31, no. 4 (2002): 215–27. http://dx.doi.org/10.1155/s0161171202109173.

Повний текст джерела
Анотація:
LetXbe a nonorientable Klein surface (KS in short), that is a compact nonorientable surface with a dianalytic structure defined on it. A Klein surfaceXis said to beq-hyperellipticif and only if there exists an involutionΦonX(a dianalytic homeomorphism of order two) such that the quotientX/〈Φ〉has algebraic genusq.q-hyperelliptic nonorientable KSs without boundary (nonorientable Riemann surfaces) were characterized by means of non-Euclidean crystallographic groups. In this paper, using that characterization, we determine bounds for the order of the automorphism group of a nonorientableq-hyperelliptic Klein surfaceXsuch thatX/〈Φ〉has no boundary and prove that the bounds are attained. Besides, we obtain the dimension of the Teichmüller space associated to this type of surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

NAKAZAWA, NAOHITO. "ON FIELD THEORIES OF LOOPS." Modern Physics Letters A 10, no. 29 (September 21, 1995): 2175–84. http://dx.doi.org/10.1142/s0217732395002337.

Повний текст джерела
Анотація:
We apply stochastic quantization method to real symmetric matrix models for the second quantization of nonorientable loops in both discretized and continuum levels. The stochastic process defined by the Langevin equation in loop space describes the time evolution of the nonorientable loops defined on nonorientable 2-D surfaces. The corresponding Fokker-Planck Hamiltonian deduces a nonorientable string field theory at the continuum limit.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Danthony, Claude, and Arnaldo Nogueira. "Measured foliations on nonorientable surfaces." Annales scientifiques de l'École normale supérieure 23, no. 3 (1990): 469–94. http://dx.doi.org/10.24033/asens.1608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stukow, Michał. "Dehn twists on nonorientable surfaces." Fundamenta Mathematicae 189, no. 2 (2006): 117–47. http://dx.doi.org/10.4064/fm189-2-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hartsfield, Nora, and Gerhard Ringel. "Minimal quadrangulations of nonorientable surfaces." Journal of Combinatorial Theory, Series A 50, no. 2 (March 1989): 186–95. http://dx.doi.org/10.1016/0097-3165(89)90014-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

YURTTAŞ, Saadet Öykü, and Mehmetcik PAMUK. "Integral laminations on nonorientable surfaces." TURKISH JOURNAL OF MATHEMATICS 42 (2018): 69–82. http://dx.doi.org/10.3906/mat-1608-76.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Levine, Adam, Daniel Ruberman, and Sašo Strle. "Nonorientable surfaces in homology cobordisms." Geometry & Topology 19, no. 1 (February 27, 2015): 439–94. http://dx.doi.org/10.2140/gt.2015.19.439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barza, Ilie, and Dorin Ghisa. "Vector fields on nonorientable surfaces." International Journal of Mathematics and Mathematical Sciences 2003, no. 3 (2003): 133–52. http://dx.doi.org/10.1155/s0161171203204038.

Повний текст джерела
Анотація:
A one-to-one correspondence is established between the germs of functions and tangent vectors on a NOSXand the bi-germs of functions, respectively, elementary fields of tangent vectors (EFTV) on the orientable double cover ofX. Some representation theorems for the algebra of germs of functions, the tangent space at an arbitrary point ofX, and the space of vector fields onXare proved by using a symmetrisation process. An example related to the normal derivative on the border of the Möbius strip supports the nontriviality of the concepts introduced in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Friesen, Tyler, and Vassily Olegovich Manturov. "Checkerboard embeddings of *-graphs into nonorientable surfaces." Journal of Knot Theory and Its Ramifications 23, no. 07 (June 2014): 1460004. http://dx.doi.org/10.1142/s0218216514600049.

Повний текст джерела
Анотація:
This paper considers *-graphs in which all vertices have degree 4 or 6, and studies the question of calculating the genus of nonorientable surfaces into which such graphs may be embedded. In a previous paper [Embeddings of *-graphs into 2-surfaces, preprint (2012), arXiv:1212.5646] by the authors, the problem of calculating whether a given *-graph in which all vertices have degree 4 or 6 admits a ℤ2-homologically trivial embedding into a given orientable surface was shown to be equivalent to a problem on matrices. Here we extend those results to nonorientable surfaces. The embeddability condition that we obtain yields quadratic-time algorithms to determine whether a *-graph with all vertices of degree 4 or 6 admits a ℤ2-homologically trivial embedding into the projective plane or into the Klein bottle.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

L�pez, Francisco J., and Francisco Mart�n. "Complete nonorientable minimal surfaces and symmetries." Duke Mathematical Journal 79, no. 3 (September 1995): 667–86. http://dx.doi.org/10.1215/s0012-7094-95-07917-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nonorientable Surfaces"

1

Atalan, Ozan Ferihe. "Automorphisms Of Complexes Of Curves On Odd Genus Nonorientable Surfaces." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606352/index.pdf.

Повний текст джерела
Анотація:
Let N be a connected nonorientable surface of genus g with n punctures. Suppose that g is odd and g + n >
6. We prove that the automorphism group of the complex of curves of N is isomorphic to the mapping class group M of N.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saint-Criq, Anthony. "Involutions et courbes flexibles réelles sur des surfaces complexes." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES087.

Повний текст джерела
Анотація:
La première partie du seizième problème de Hilbert traite de la topologie des courbes algébriques réelles régulières dans le plan projectif. Il est bien connu que bon nombre des propriétés topologiques satisfaites par de telles courbes sont également vraies pour la classe plus large des courbes flexibles, introduites par O. Viro en 1984. Le but de cette thèse est d'approfondir les origines topologiques des restrictions sur les courbes réelles, en lien avec le seizième problème de Hilbert. Nous ajoutons une condition naturelle à la définition de courbe flexible, à savoir qu'elles doivent intersecter une conique réelle vide Q comme une courbe algébrique, c'est-à-dire en des points positifs uniquement. Nous voyons CP(2) comme un cylindre sur un espace lenticulaire L(4,1)×R, que l'on compactifie en ajoutant RP(2) et Q aux bords, et nous utilisons la décomposition induite sur S(4)=CP(2)/conj. C'est un fait standard que la surface d'Arnold joue un rôle essentiel dans l'étude des courbes de degré pair. Nous introduisons un analogue de cette surface pour des courbes de degré impair. Nous généralisons également la notion de courbe flexible pour inclure des surfaces non orientables. Nous considérons qu'une courbe flexible est de degré m si son auto-intersection est m² et si elle intersecte la conique Q de manière transverse en exactement 2m points. Notre résultat principal affirme que pour une telle courbe flexible (non nécessairement orientable) de degré impair m=2k+1 ne peut pas posséder plus de -χ(F)/2-k²+k+1, où χ(F) est la caractéristique d'Euler de F. Cette borne supérieure se simplifie en k² dans le cas d'une courbe flexible au sens usuel. Nous généralisons également notre résultat pour des courbes flexibles sur des quadriques, ce qui produit une nouvelle restriction, même pour des courbes algébriques. Dans les chapitres introductifs, un aperçu détaillé de la théorie classique des courbes réelles planes est fait, en s'appuyant aussi bien sur le point de vue réel que complexe. Certains résultats à propos de la théorie des surfaces nouées dans les 4-variétés sont énoncés. Plus précisément, il est question de faits concernant la classe d'Euler du fibré normal d'une surface plongée. Cela nous amène ensuite à considérer la fonction de genre non-orientable d'une 4-variété. Cela constitue un analogue de la conjecture de Thom (résolue par Kronheimer et Mrowka en 1994) pour des surfaces non orientables. Nous calculons presque totalement cette fonction pour CP(2), et nous étudions cette fonction sur d'autres 4-variétés. Enfin, nous digressons autour de la nouvelle notion de courbes flexibles non orientables, où nous dressons une liste de résultats connus qui restent vrai dans ce cadre. Nous nous concentrons aussi sur la classe des courbes algébriques et flexibles qui sont invariantes sous l'action d'une involution holomorphe de CP(2), une notion introduite par T. Fiedler et appelées courbes symétriques. Nous donnons un état de l'art, et nous formulons une succession de petits résultats à propos de la disposition d'une courbe symétrique par rapport aux éléments de symétrie. Nous proposons également une approche pour tenter de généraliser la congruence de Fiedler p-n≡k² [16], valable pour des M-courbes symétriques de degré 2k, à des (M-1)-courbes symétriques de degré 2k
The first part of Hilbert's sixteenth problem deals with the topology of non-singular real plane algebraic curves in the projective plane. As well-known, many topological properties of such curves are shared with the wider class of flexible curves, introduced by O. Viro in 1984. The goal of this thesis is to further investigate the topological origins of the restrictions on real curves in connection with Hilbert's sixteenth problem. We add a natural condition to the definition of flexible curves, namely that they shall intersect an empty real conic Q like algebraic curves do, i.e. all intersections are positive. We see CP(2) as a cylinder over a lens space L(4,1)×R which is compactified by adding RP(2) and Q respectively to the ends, and we use the induced decomposition of S(4)=CP(2)/conj. It is a standard fact that Arnold's surface plays an essential role in the study of curves of even degree. We introduce an analogue of this surface for curves of odd degree. We generalize the notion of flexible curves further to include non-orientable surfaces as well. We say that a flexible curve is of degree m if its self-intersection is m² and it intersects the conic Q transversely in exactly 2m points. Our main result states that for a not necessarily orientable curve of odd degree 2k+1, its number of non-empty ovals is no larger than χ(F)/2-k²+k+1, where χ(F) is the Euler characteristic of F. This upper bound simplifies to k² in the case of a usual flexible curve. We also generalize our result for flexible curves on quadrics, which provides a new restriction, even for algebraic curves. In the introductory chapters, a thorough survey of the classical theory of real plane curves is outlined, both from the real and the complex points of view. Some results regarding the theory of knotted surfaces in 4-manifolds are laid down. More specifically, we review statements involving the Euler class of normal bundles of embedded surfaces. This eventually leads us to consider the non-orientable genus function of a 4-manifold. This forms a non-orientable counterpart of the Thom conjecture, proved by Kronheimer and Mrowka in 1994 in the orientable case. We almost entirely compute this function in the case of CP(2), and we investigate that function on other 4-manifolds. Finally, we digress around the new notion of non-orientable flexible curves, where we survey which known results still hold in that setting. We also focus on algebraic and flexible curves invariant under a holomorphic involution of CP(2), a smaller class of curves introduced by T. Fiedler and called symmetric curves. We give a state of the art, and we formulate a collection of small results results regarding the position of a symmetric plane curve with respect to the elements of symmetry. We also propose a possible approach to generalize Fiedler's congruence p-n≡k² [16], holding for symmetric M-curves of even degree 2k, into one for symmetric (M-1)-curves of even degree
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Automorphisms of complexes of curves on odd genus nonorientable surfaces." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606352/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baird, Thomas John. "The moduli space of flat G-bundles over a nonorientable surface." 2008. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=742554&T=F.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Nonorientable Surfaces"

1

Ho, Nan-Kuo. Yang-Mills connections on orientable and nonorientable surfaces. Providence, R.I: American Mathematical Society, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1974-, Liu Chiu-Chu Melissa, ed. Yang-Mills connections on orientable and nonorientable surfaces. Providence, R.I: American Mathematical Society, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

I, Visentin Terry, ed. An atlas of the smaller maps in orientable and nonorientable surfaces. Boca Raton, FL: Chapman & Hall/CRC, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jackson, David, and Terry I. Visentin. Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces. Taylor & Francis Group, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jackson, David, and Terry I. Visentin. Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces. Taylor & Francis Group, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jackson, David, and Terry I. Visentin. Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, an. Discrete Mathematics and Its Applications. Taylor & Francis Group, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jackson, David, and Terry I. Visentin. An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces (Crc Press Series on Discrete Mathematics and Its Applications). Chapman & Hall/CRC, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ho, Nan-Kuo. The moduli space of gauge equivalence classes of flat connections over a compact nonorientable surface. 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nonorientable Surfaces"

1

Paris, Luis. "Presentations for the Mapping Class Groups of Nonorientable Surfaces." In Trends in Mathematics, 73–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05488-9_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aoyama, Hideaki, Anatoli Konechny, V. Lemes, N. Maggiore, M. Sarandy, S. Sorella, Steven Duplij, et al. "Nonorientable Riemann Surface." In Concise Encyclopedia of Supersymmetry, 277. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jackson, D. "Algebraic and analytic approaches for the genus series for 2-cell embeddings on orientable and nonorientable surfaces." In Formal Power Series and Algebraic Combinatorics (Séries Formelles et Combinatoire Algébrique), 1994, 115–32. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/dimacs/024/06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Maps in Nonorientable Surfaces." In Discrete Mathematics and Its Applications, 115–38. Chapman and Hall/CRC, 2000. http://dx.doi.org/10.1201/9781420035742-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Orientable and nonorientable minimal surfaces." In World Congress of Nonlinear Analysts '92, 819–26. De Gruyter, 1996. http://dx.doi.org/10.1515/9783110883237.819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nonorientable Surfaces"

1

BARZA, ILIE, and DORIN GHISA. "NONORIENTABLE COMPACTIFICATIONS OF RIEMANN SURFACES." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії