Добірка наукової літератури з теми "Nonmonotone linesearch"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonmonotone linesearch".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nonmonotone linesearch"

1

Toint, Philippe L. "An Assessment of Nonmonotone Linesearch Techniques for Unconstrained Optimization." SIAM Journal on Scientific Computing 17, no. 3 (May 1996): 725–39. http://dx.doi.org/10.1137/s106482759427021x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Fu-Sheng, and Jin-Bao Jian. "A New Nonmonotone Linesearch SQP Algorithm for Unconstrained Minimax Problem." Numerical Functional Analysis and Optimization 35, no. 4 (March 7, 2014): 487–508. http://dx.doi.org/10.1080/01630563.2013.873454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xu, Da-chuan. "Global Convergence of the Broyden's Class of Quasi-Newton Methods with Nonmonotone Linesearch." Acta Mathematicae Applicatae Sinica, English Series 19, no. 1 (March 2003): 19–24. http://dx.doi.org/10.1007/s10255-003-0076-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cholamjiak, Watcharaporn, Hemen Dutta, and Damrongsak Yambangwai. "Image restorations using an inertial parallel hybrid algorithm with Armijo linesearch for nonmonotone equilibrium problems." Chaos, Solitons & Fractals 153 (December 2021): 111462. http://dx.doi.org/10.1016/j.chaos.2021.111462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Themelis, Andreas, Lorenzo Stella, and Panagiotis Patrinos. "Forward-Backward Envelope for the Sum of Two Nonconvex Functions: Further Properties and Nonmonotone Linesearch Algorithms." SIAM Journal on Optimization 28, no. 3 (January 2018): 2274–303. http://dx.doi.org/10.1137/16m1080240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, G., J. Han, and D. Sun. "Global convergece of the bfgs algorithm with nonmonotone linesearch∗∗this work is supported by national natural science foundation$ef:." Optimization 34, no. 2 (January 1995): 147–59. http://dx.doi.org/10.1080/02331939508844101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Song, Yanlai, and Omar Bazighifan. "Modified Inertial Subgradient Extragradient Method with Regularization for Variational Inequality and Null Point Problems." Mathematics 10, no. 14 (July 6, 2022): 2367. http://dx.doi.org/10.3390/math10142367.

Повний текст джерела
Анотація:
The paper develops a modified inertial subgradient extragradient method to find a solution to the variational inequality problem over the set of common solutions to the variational inequality and null point problems. The proposed method adopts a nonmonotonic stepsize rule without any linesearch procedure. We describe how to incorporate the regularization technique and the subgradient extragradient method; then, we establish the strong convergence of the proposed method under some appropriate conditions. Several numerical experiments are also provided to verify the efficiency of the introduced method with respect to previous methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Iyiola, Olaniyi S., Ferdinard U. Ogbuisi, and Yekini Shehu. "An inertial type iterative method with Armijo linesearch for nonmonotone equilibrium problems." Calcolo 55, no. 4 (November 19, 2018). http://dx.doi.org/10.1007/s10092-018-0295-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nonmonotone linesearch"

1

Sgattoni, Cristina. "Solving systems of nonlinear equations via spectral residual methods." Doctoral thesis, 2021. http://hdl.handle.net/2158/1238325.

Повний текст джерела
Анотація:
This thesis addresses the numerical solution of systems of nonlinear equations via spectral residual methods. Spectral residual methods are iterative procedures, they use the residual vector as search direction and a spectral steplength, i.e., a steplength that is related to the spectrum of the average matrices associated to the Jacobian matrix of the system. Such procedures are widely studied and employed since they are derivative-free and low-cost per iteration. The first aim of the work is to analyze the properties of the spectral residual steplengths and study how they affect the performance of the methods. This aim is addressed both from a theoretical and experimental point of view. The main contributions in this direction are: the theoretical analysis of the steplengths proposed in the literature and of their impact on the methods behaviour; the analysis of the performance of spectral methods with various rules for updating the steplengths. We propose and extensively test different steplength strategies. Rules based on adaptive strategies that suitably combine small and large steplengths result by far more effective than rules based on static choices of the steplength. Numerical experience is conducted on sequences of nonlinear systems arising from rolling contact models which play a central role in many important applications, such as rolling bearings and wheel-rail interaction. Solving these models gives rise to sequences which consist of a large number of medium-size nonlinear systems and represent a relevant benchmark test set for the purpose of the thesis. The second purpose of the thesis is to propose a variant of the derivative-free spectral residual method used in the first part and obtain a general scheme globally convergent under more general conditions. The robustness of the new method is potentially improved with respect to the previous version. Numerical experiments are conducted both on the problems arising in rolling contact models and on a set of problems commonly used for testing solvers for nonlinear systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії