Добірка наукової літератури з теми "Nonlocal Transport"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonlocal Transport".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nonlocal Transport"
Shin, Hyeyum Hailey, and Song-You Hong. "Representation of the Subgrid-Scale Turbulent Transport in Convective Boundary Layers at Gray-Zone Resolutions." Monthly Weather Review 143, no. 1 (January 1, 2015): 250–71. http://dx.doi.org/10.1175/mwr-d-14-00116.1.
Повний текст джерелаLi, Zhipeng, Hongwu Tang, Saiyu Yuan, Huiming Zhang, Lingzhong Kong, and HongGuang Sun. "Modeling Long-Distance Forward and Backward Diffusion Processes in Tracer Transport Using the Fractional Laplacian on Bounded Domains." Fractal and Fractional 7, no. 11 (November 15, 2023): 823. http://dx.doi.org/10.3390/fractalfract7110823.
Повний текст джерелаTzou, D. Y. "Nonlocal behavior in phonon transport." International Journal of Heat and Mass Transfer 54, no. 1-3 (January 2011): 475–81. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.022.
Повний текст джерелаLi, Dong, and Jose Rodrigo. "Remarks on a nonlocal transport." Advances in Mathematics 374 (November 2020): 107345. http://dx.doi.org/10.1016/j.aim.2020.107345.
Повний текст джерелаDel Sorbo, D., J. L. Feugeas, Ph Nicolaï, M. Olazabal-Loumé, B. Dubroca, and V. Tikhonchuk. "Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas." Laser and Particle Beams 34, no. 3 (June 20, 2016): 412–25. http://dx.doi.org/10.1017/s0263034616000252.
Повний текст джерелаShin, Hyeyum Hailey, and Song-You Hong. "Analysis of Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-Zone Resolutions." Journal of the Atmospheric Sciences 70, no. 10 (October 1, 2013): 3248–61. http://dx.doi.org/10.1175/jas-d-12-0290.1.
Повний текст джерелаSilva, S. S. A., J. C. Santos, J. Büchner, and M. V. Alves. "Nonlocal heat flux effects on temperature evolution of the solar atmosphere." Astronomy & Astrophysics 615 (July 2018): A32. http://dx.doi.org/10.1051/0004-6361/201730580.
Повний текст джерелаGhannam, Khaled, Tomer Duman, Gabriel Katul, and Marcelo Chamecki. "GRADIENT-DIFFUSION CLOSURE AND THE EJECTION-SWEEP CYCLE IN CONVECTIVE BOUNDARY LAYERS." Ciência e Natura 38 (July 20, 2016): 552. http://dx.doi.org/10.5902/2179460x21576.
Повний текст джерелаdel-Castillo-Negrete, D. "Fractional diffusion models of nonlocal transport." Physics of Plasmas 13, no. 8 (August 2006): 082308. http://dx.doi.org/10.1063/1.2336114.
Повний текст джерелаBychenkov, V. Yu, J. P. Matte, and T. W. Johnston. "Nonlocal electron transport in spherical plasmas." Physics of Plasmas 3, no. 4 (April 1996): 1280–83. http://dx.doi.org/10.1063/1.871752.
Повний текст джерелаДисертації з теми "Nonlocal Transport"
Morales-Casique, Eric. "Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280728.
Повний текст джерелаToy, Jonathan Andrew. "A Nonlocal Model for the Segregation of Axonal Microtubules and Neurofilaments in Neurodegenerative Diseases." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461080485.
Повний текст джерелаDel, Sorbo Dario. "An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0336/document.
Повний текст джерелаHydrodynamic simulations in high-energy-density physics and inertial con nement fusion require a detailed description of energy uxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolaï and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model reproduces the results of the local transport theory in plasma, developed by Braginskii, in a broad range of degrees of magnetization and predicts new results in the nonlocal regime. This work constitutes a first validation of the entropic closure assumption in the weakly-anisotropic regime. It can be added to the existing tests, in the strongly-anisotropic regimes
Chrisment, Antoine. "Étude théorique du transport électronique non local dans les plasmas de fusion par confinement inertiel." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0133.
Повний текст джерелаInertial fusion by lasers has entered a new era since ignition has been achieved. The development of a commercial reactor requires to transform one successful shot per year into several ones in a second. This means significantly improving the robustness of the implosion control. To do so the dialogue between experimental progresses and theoretical understanding must be strengthened through the creation of accurate simulation tools. This thesis addresses the problem of modeling electron heat transfer within the conduction region of the ablative flow. Given the variety of phenomena causing the distortion of the electron distribution function, it appeared that to close the macroscopic equations the approach of exactly solving reduced kinetic equations with an efficient numerical method is promising since its flexibility constitutes the most fertile ground for progressive extensions. In this manuscript, we deepen the understanding, improve and efficiently implement a reduced kinetic model whose purpose is restricted to treating the problem of quasi-static nonlocal transport within an isolated, one-dimensional and unmagnetized plasma
Silva, Suzana de Souza e. Almeida. "On the influence of nonlocal heat flux on energy transport and balance in the solar atmosphere. (Sobre a influência do fluxo de calor não local sobre o transporte e balanço de energia na atmosfera solar)." Instituto Nacional de Pesquisas Espaciais (INPE), 2017. http://urlib.net/sid.inpe.br/mtc-m21b/2016/12.24.01.22.
Повний текст джерелаNa coroa solar, o fluxo de calor é um dos principais processos de transporte de energia. Uma vez que o plasma coronal pode ser descrito como fracamente colisional, a formulação clássica para o fluxo de calor pode não ser a descrição mais precisa. Em um meio com menos colisões, o fluxo de calor terá contribuições não apenas de partículas vizinhas, mas também de partículas provenientes de outras regiões ao longo da linha de campo magnético. Assim, uma melhor descrição do fluxo de calor neste contexto pode ser oferecida por uma formulação não-local. Implementamos um fluxo de calor não-local em um modelo 3D MHD e investigamos seus efeitos na evolução térmica do sistema. Nós simulamos a evolução do plasma e campo magnético usando esse modelo considerando as seguintes formulações para o fluxo de calor: clássico (local) e não-local. O campo magnético inicial foi obtido a partir de uma extrapolação potencial da componente observada da linha de visada do campo magnético fotosférico para AR11226. Nós evoluímos o sistema impondo deslocamento dos footpoints das linhas de campo magnético. Ao final, comparamos as diferenças na evolução do plasma obtido utilizando as distintas formulações para o fluxo de calor. A inclusão de uma formulação não-local para o fluxo de calor conduz a diferenças consideráveis no perfil de temperatura média da atmosfera inferior e da região de transição em comparação com a formulação clássica. Há também diferenças notáveis quanto às contribuições do transporte de energia e dos termos de origem para a temperatura dependendo da formulação utilizada. Nossos resultados sugerem que uma formulação de fluxo de calor diferente afeta consideravelmente a dinâmica de aquecimento e a evolução da temperatura do plasma.
Nguyen, Thi Nhu Thao. "Modélisation mathématique et simulation de la dynamique spatiale de populations de campagnols dans l’est de la France." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD031.
Повний текст джерелаThe main objective of the thesis is to propose and analyze mathematical models based on partial differential equations (PDE) to describe the spatial dynamics of two species of voles (Microtus arvalis and Arvicola terrestris), which are particularly monitored in Eastern France. The models that we have proposed are based on PDE which describe the evolution of the density of the population of voles as a function of time, age and position in space. We have two complementary approaches to represent the dynamics. In the first approach, we propose a first model that consists of a scalar PDE depending on time, age, and space supplemented with a non-local boundary condition. The flux is linear with constant coefficient in the direction of age but contains a non-local term in the directions of space. Moreover, the equation contains a second order term in the spatial variables only. We have demonstrated the existence and stability of weak entropy solutions for the model by using, respectively, the Panov's theorem of the multidimensional compensated and a doubling of the variables type argument. In the second approach we were inspired by a Multi Agent model proposed by Marilleau-Lang-Giraudoux, where the spatial dynamics of juveniles is decoupled from local evolution in each plot. To apply this model, we have introduced a directed graph whose nodes are the plots. In each node, the evolution of the colony is described by a transport equation with two variables, time and age, and the movements of dispersion, in space, are represented by the passages from one node to the other. We have proposed a discretization of the model, by finite volume methods, and noticed that this approach manages to reproduce the qualitative characteristics of the spatial dynamics observed in nature. We also proposed to consider a predator-prey system consisting of a hyperbolic equation for predators and a parabolic-hyperbolic equation for preys, where the prey's equation is analogous to the first model of the vole populations. The drift term in the predators' equation depends nonlocally on the density of prey and the two equations are also coupled via classical source terms of Lotka-Volterra type. We establish existence of solutions by applying the vanishing viscosity method, and we prove stability by a doubling of variables type argument. Moreover, concerning the numerical simulation of the first model in one-dimensional space, we obtain a finite volume discretization by using the upwind scheme and then validate the numerical scheme.The last part of my thesis work is a project in which I participated during a Summer school CEMRACS. The project was on a subject of biomathematics different from that of the thesis (an epidemiological model for salmonellosis). A new generic multi-scale modeling framework for heterogeneous transmission of pathogens in an animal population is suggested. At the intra-host level, the model describes the interaction between the commensal microbiota, the pathogen and the inflammatory response. Random fluctuations in the ecological dynamics of the individual microbiota and transmission at the inter-host scale are added to obtain a PDE model of drift-diffusion of pathogen distribution at the population level. The model is also extended to represent transmission between several populations. Asymptotic behavior as well as the impact of control strategies, including cleaning and administration of antimicrobials, are studied by numerical simulation
Bullara, Domenico. "Nonlinear reactive processes in constrained media." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209073.
Повний текст джерелаThe first system we study is a reversible trimolecular chemical reaction which is taking place in closed one-dimensional lattices. We show that the low dimensionality may or may not prevent the reaction from reaching its equilibrium state, depending on the microscopic properties of the molecular reactive mechanism.
The second reactive process we consider is a network of biological interactions between pigment cells on the skin of zebrafish. We show that the combination of short-range and long-range contact-mediated feedbacks can promote a Turing instability which gives rise to stationary patterns in space with intrinsic wavelength, without the need of any kind of motion.
Then we investigate the behavior of a typical chemical oscillator (the Brusselator) when it is constrained in a finite space. We show that molecular crowding can in such cases promote new nonlinear dynamical behaviors, affect the usual ones or even destroy them.
Finally we look at the situation where the constraint is given by the presence of a solid porous matrix that can react with a perfect gas in an exothermic way. We show on one hand that the interplay between reaction, heat flux and mass transport can give rise to the propagation of adsorption waves, and on the other hand that the coupling between the chemical reaction and the changes in the structural properties of the matrix can produce sustained chemomechanical oscillations.
These results show that spatial constraints can affect the kinetics of reactions, and are able to produce otherwise absent nonlinear dynamical behaviors. As a consequence of this, the usual understanding of the nonlinear dynamics of reactive systems can be put into question or even disproved. In order to have a better understanding of these systems we must acknowledge that mechanical and structural feedbacks can be important components of many reactive systems, and that they can be the very source of complex and fascinating phenomena.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Laborde, Maxime. "Systèmes de particules en interaction, approche par flot de gradient dans l'espace de Wasserstein." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED014/document.
Повний текст джерелаSince 1998 and the seminal work of Jordan, Kinderlehrer and Otto, it is well known that a large class of parabolic equations can be seen as gradient flows in the Wasserstein space. This thesis is devoted to extensions of this theory to equations and systems which do not have exactly a gradient flow structure. We study different kind of couplings. First, we treat the case of nonlocal interactions in the drift. Then, we study cross diffusion systems which model congestion for several species. We are also interested in reaction-diffusion systems as diffusive prey-predator systems or tumor growth models. Finally, we introduce a new class of systems where the interaction is given by a multi-marginal transport problem. In many cases, we give numerical simulations to illustrate our theorical results
Книги з теми "Nonlocal Transport"
Morawetz, Klaus. Nonlocal Collision Integral. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0013.
Повний текст джерелаAtienza, Pablo Burset. Superconductivity in Graphene and Carbon Nanotubes: Proximity Effect and Nonlocal Transport. Springer International Publishing AG, 2016.
Знайти повний текст джерелаAtienza, Pablo Burset. Superconductivity in Graphene and Carbon Nanotubes: Proximity Effect and Nonlocal Transport. Springer London, Limited, 2013.
Знайти повний текст джерелаSuperconductivity In Graphene And Carbon Nanotubes Proximity Effect And Nonlocal Transport. Springer International Publishing AG, 2013.
Знайти повний текст джерелаCardaliaguet, Pierre, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. The Master Equation and the Convergence Problem in Mean Field Games. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691190716.001.0001.
Повний текст джерелаЧастини книг з теми "Nonlocal Transport"
Burset Atienza, Pablo. "Nonlocal Transport in Graphene." In Superconductivity in Graphene and Carbon Nanotubes, 83–99. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01110-3_5.
Повний текст джерелаSellitto, Antonio, Vito Antonio Cimmelli, and David Jou. "Weakly Nonlocal and Nonlinear Heat Transport." In Mesoscopic Theories of Heat Transport in Nanosystems, 109–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27206-1_5.
Повний текст джерелаO’Malley, Daniel, and John H. Cushman. "Nonlocal Models for Transport in Fractal Media." In Fractals, 153–68. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. | “A science publishers book.”: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152264-6.
Повний текст джерелаOtani, Yoshichika, Takashi Kimura, Yasuhiro Niimi, and Hiroshi Idzuchi. "Nonlocal Spin Valves in Metallic Nanostructures." In Spintronics Handbook: Spin Transport and Magnetism, Second Edition, 301–21. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429441189-9.
Повний текст джерелаLagoutière, Frédéric, and Nicolas Vauchelet. "Analysis and Simulation of Nonlinear and Nonlocal Transport Equations." In Innovative Algorithms and Analysis, 265–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49262-9_10.
Повний текст джерелаAlvarez, F. X., D. Jou, and A. Sellitto. "Nonlocal Transport Equations for Small Systems and Fast Processes." In Encyclopedia of Continuum Mechanics, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53605-6_64-1.
Повний текст джерелаAlvarez, F. X., D. Jou, and A. Sellitto. "Nonlocal Transport Equations for Small Systems and Fast Processes." In Encyclopedia of Continuum Mechanics, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53605-6_64-2.
Повний текст джерелаAlvarez, Francesc Xavier, David Jou, and Antonio Sellitto. "Nonlocal Transport Equations for Small Systems and Fast Processes." In Encyclopedia of Continuum Mechanics, 1903–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_64.
Повний текст джерелаHoang, Vu, and Maria Radosz. "A Note on Singularity Formation for a Nonlocal Transport Equation (Research)." In Advances in Mathematical Sciences, 227–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42687-3_15.
Повний текст джерелаTsukagoshi, Kazuhito, Kenichi Oto, Sadao Takaoka, Kazuo Murase, Yukihiko Takagaki, Kenji Gamo, and Susumu Namba. "Spin-Dependent Nonlocal Quantum Transport Influenced by Gate Voltage in GaAs/AlGaAs Wires." In Science and Technology of Mesoscopic Structures, 199–204. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_20.
Повний текст джерелаТези доповідей конференцій з теми "Nonlocal Transport"
Yu, Xin, Deyin Zheng, Jianyu Du, Chi Zhang, and Wei Wang. "Integrating Nanoscale Dynamics for Enhanced Evaporation: A Theoretical Framework Addressing Nonlocal Transport in Nanopores." In 2024 25th International Conference on Electronic Packaging Technology (ICEPT), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icept63120.2024.10668497.
Повний текст джерелаMima, K., M. Honda, S. Miyamoto, and S. Kato. "Effects of nonlocal heat transport on laser implosion." In Laser interaction and related plasma phenomena: 12th international conference. AIP, 1996. http://dx.doi.org/10.1063/1.50373.
Повний текст джерелаJin, Seonghoon, Sung-min Hong, Jongchol Kim, Young J. Park, and Hong S. Min. "Nonlocal transport and thermal noise of the nanoscale MOSFET." In Second International Symposium on Fluctuations and Noise, edited by Francois Danneville, Fabrizio Bonani, M. Jamal Deen, and Michael E. Levinshtein. SPIE, 2004. http://dx.doi.org/10.1117/12.546941.
Повний текст джерелаHamba, Fujihiro. "NONLOCAL TRANSPORT OF PASSIVE SCALAR IN TURBULENT CHANNEL FLOW." In Third Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.540.
Повний текст джерелаHamba, Fujihiro. "NONLOCAL ANALYSIS OF MOMENTUM TRANSPORT IN TURBULENT CHANNEL FLOW." In Fourth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2005. http://dx.doi.org/10.1615/tsfp4.250.
Повний текст джерелаKaganovich, I. D., Y. Raitses, A. V. Khrabrov, V. I. Demidov, and D. Sydorenko. "Nonlocal collisionless and collisional electron transport in low temperature plasmas." In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534359.
Повний текст джерелаBychenkov, V. Y., S. G. Bochkarev, Wojciech Rozmus, O. V. Batishchev, J. J. Martinell, and T. K. Soboleva. "Nonthermal tails of the electron distribution functions with nonlocal transport." In ECLIM 2002: 27th European conference on Laser Interaction with Matter, edited by Oleg N. Krokhin, Sergey Y. Gus'kov, and Yury A. Merkul'ev. SPIE, 2003. http://dx.doi.org/10.1117/12.536948.
Повний текст джерелаKlimova, A. V. "The nonlocal electron transport in transistor structures with submicron surface relief." In 2005 15th International Crimean Conference Microwave and Telecommunication Technology. IEEE, 2005. http://dx.doi.org/10.1109/crmico.2005.1565000.
Повний текст джерелаLesev, Vadim N., Anna O. Zheldasheva, Oksana I. Bzheumikhova, and Cantemir M. Gukezhev. "On a Nonlocal Model with Operators of Fractional Integro-Differentiation." In 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT&QM&IS). IEEE, 2018. http://dx.doi.org/10.1109/itmqis.2018.8525069.
Повний текст джерелаSibatov, Renat, Anatoly Erlykin, Vladimir Uchaikin, and Arnold Wolfendale. "A Look at the Cosmic Ray Anisotropy with the Nonlocal Relativistic Transport Approach." In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0463.
Повний текст джерелаЗвіти організацій з теми "Nonlocal Transport"
Linn, R. R., T. T. Clark, F. H. Harlow, and L. Turner. Turbulence transport with nonlocal interactions. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/645494.
Повний текст джерелаSpizzo, G., R. B. White, S. Cappello, and L. Marrelli. Nonlocal Transport in the Reversed Field Pinch. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965276.
Повний текст джерелаRax, J. M., and R. B. White. Nonlocal heat transport in a stochastic magnetic field. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/6255493.
Повний текст джерелаBrunner, S., E. Valeo, and J. A. Krommes. Linear delta-f simulations of nonlocal electron heat transport. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750428.
Повний текст джерелаD'Elia, Marta, Christian Glusa, Xiao Xu, and John Foster. Machine-learning of nonlocal kernels for anomalous subsurface transport from breakthrough curves. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1842267.
Повний текст джерелаCushman, J. H. Nonlocal transport of chemically reactive, degradable species in heterogeneous porous media. Final report. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/303999.
Повний текст джерелаD'Elia, Marta, and Mamikon Gulian. Analysis of Anisotropic Nonlocal Diffusion Models: Well-posedness of Fractional Problems for Anomalous Transport. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1763574.
Повний текст джерелаD'Elia, Marta, Mamikon Gulian, Jorge Suzuki, and Mohsen Zayernouri. Fractional Modeling in Action: A Survey of Nonlocal Models for Subsurface Transport, Turbulent Flows, and Anomalous Materials. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1820001.
Повний текст джерелаKissick, M. W., J. D. Callen, and E. D. Fredrickson. Required conditions for and coincident 1/1-mode activity associated with the nonlocal electron heat transport effect on TFTR. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/532611.
Повний текст джерела