Дисертації з теми "Nonlinear systems of equations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Nonlinear systems of equations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Hadad, Yaron. "Integrable Nonlinear Relativistic Equations." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/293490.
Повний текст джерелаZerihun, Tadesse G. "Nonlinear Techniques for Stochastic Systems of Differential Equations." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4970.
Повний текст джерелаJaschke, Leonhard. "Preconditioned Arnoldi methods for systems of nonlinear equations /." Paris (121 Av. des Champs-Élysées, 75008) : Wiku, 2004. http://catalogue.bnf.fr/ark:/12148/cb391991990.
Повний текст джерелаFoley, Dawn Christine. "Applications of State space realization of nonlinear input/output difference equations." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16818.
Повний текст джерелаVan, der Walt Jan Harm. "Generalized solutions of systems of nonlinear partial differential equations." Thesis, Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-05242009-122628.
Повний текст джерелаReichelt, Sina. "Two-scale homogenization of systems of nonlinear parabolic equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17385.
Повний текст джерелаThe aim of this thesis is to derive homogenization results for two different types of systems of nonlinear parabolic equations, namely reaction-diffusion systems involving different diffusion length scales and Cahn-Hilliard-type equations. The coefficient functions of the considered parabolic equations are periodically oscillating with a period which is proportional to the ratio between the charactersitic microscopic and macroscopic length scales. In view of greater structural insight and less computational effort, it is our aim to rigorously derive effective equations as the period tends to zero such that solutions of the original model converge to solutions of the effective model. To account for the periodic microstructure as well as for the different diffusion length scales, we employ the method of two-scale convergence via periodic unfolding. In the first part of the thesis, we consider reaction-diffusion systems, where for some species the diffusion length scale is of order of the macroscopic length scale and for other species it is of order of the microscopic one. Based on the notion of strong two-scale convergence, we prove that the effective model is a two-scale reaction-diffusion system depending on the macroscopic and the microscopic scale. Our approach supplies explicit rates for the convergence of the solution. In the second part, we consider Cahn-Hilliard-type equations with position-dependent mobilities and general potentials. It is well-known that the classical Cahn-Hilliard equation admits a gradient structure. Based on the Gamma-convergence of the energies and the dissipation potentials, we prove evolutionary Gamma-convergence, for the associated gradient system such that we obtain in the limit of vanishing periods a Cahn-Hilliard equation with homogenized coefficients.
Alam, Md Shafiful. "Iterative Methods to Solve Systems of Nonlinear Algebraic Equations." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2305.
Повний текст джерелаHandel, Andreas. "Limits of Localized Control in Extended Nonlinear Systems." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5025.
Повний текст джерелаTwiton, Michael. "Analysis of Singular Solutions of Certain Painlevé Equations." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/18206.
Повний текст джерелаLiu, Weian, Yin Yang, and Gang Lu. "Viscosity solutions of fully nonlinear parabolic systems." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2621/.
Повний текст джерелаFloater, Michael S. "Blow-up of solutions to nonlinear parabolic equations and systems." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235037.
Повний текст джерелаCraciun, Gheorghe. "Systems of nonlinear equations deriving from complex chemical reaction networks /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486463321624709.
Повний текст джерелаZhelezov, Gleb, and Gleb Zhelezov. "Coalescing Particle Systems and Applications to Nonlinear Fokker-Planck Equations." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/624562.
Повний текст джерелаWu, Xiaoming. "Partial differential equations with applications to wave propagation." Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239573.
Повний текст джерелаLeiva, Hugo. "Skew-product semiflows and time-dependent dynamical systems." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/29912.
Повний текст джерелаRejoub, Riad A. "Projective and non-projective systems of first order nonlinear differential equations." Scholarly Commons, 1992. https://scholarlycommons.pacific.edu/uop_etds/2228.
Повний текст джерелаSee, Chong Wee Simon. "Numerical methods for the simulation of dynamic discontinuous systems." Thesis, University of Salford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358276.
Повний текст джерелаKlug, Andreas. "Affine-scaling methods for nonlinear minimization problems and nonlinear systems of equations with bound constraints." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981743978.
Повний текст джерелаMulvey, Joseph Anthony. "Symmetry methods for integrable systems." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5379/.
Повний текст джерелаGurevich, Svetlana V. "Lateral self-organization in nonlinear transport systems described by reaction diffusion equations." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983706921.
Повний текст джерелаPhilipowski, Robert. "Stochastic interacting particle systems and nonlinear partial differential equations from fluid mechanics." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=986005622.
Повний текст джерелаJoubert, Adriaan Wolfgang. "Parallel methods for systems of nonlinear equations applied to load flow analysis." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362721.
Повний текст джерелаBobade, Parag Suhas. "Modeling, Approximation, and Control for a Class of Nonlinear Systems." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/80978.
Повний текст джерелаPh. D.
Ali, Jaffar. "Multiple positive solutions for classes of elliptic systems with combined nonlinear effects." Diss., Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-07082008-153843.
Повний текст джерелаYe, Jinglong. "Infinite semipositone systems." Diss., Mississippi State : Mississippi State University, 2009. http://library.msstate.edu/etd/show.asp?etd=etd-07072009-132254.
Повний текст джерелаAhlip, Rehez Ajmal. "Stability & filtering of stochastic systems." Thesis, Queensland University of Technology, 1997.
Знайти повний текст джерелаO'Day, Joseph Patrick. "Investigation of a coupled Duffing oscillator system in a varying potential field /." Online version of thesis, 2005. https://ritdml.rit.edu/dspace/handle/1850/1212.
Повний текст джерелаClinger, Richard A. "Stability Analysis of Systems of Difference Equations." VCU Scholars Compass, 2007. http://hdl.handle.net/10156/1318.
Повний текст джерелаMarahrens, Daniel. "On some nonlinear partial differential equations for classical and quantum many body systems." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244203.
Повний текст джерелаTaylor, Gillian Clare. "Application of the Hodgkin-Huxley equations to the propagation of small graded potentials in neurons." Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/742.
Повний текст джерелаKhames, Imene. "Nonlinear network wave equations : periodic solutions and graph characterizations." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR04/document.
Повний текст джерелаIn this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks. This is a general model, where the usual continuum Laplacian is replaced by the graph Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is the discrete φ4 model, describing a mechanical network of coupled nonlinear oscillators or an electrical network where the components are diodes or Josephson junctions. The linear graph wave equation is well understood in terms of normal modes, these are periodic solutions associated to the eigenvectors of the graph Laplacian. Our first goal is to investigate the continuation of normal modes in the nonlinear regime and the modes coupling in the presence of nonlinearity. By inspecting the normal modes of the graph Laplacian, we identify which ones can be extended into nonlinear periodic orbits. They are normal modes whose Laplacian eigenvectors are composed uniquely of {1}, {-1,+1} or {-1,0,+1}. We perform a systematic linear stability (Floquet) analysis of these orbits and show the modes coupling when the orbit is unstable. Then, we characterize all graphs for which there are eigenvectors of the graph Laplacian having all their components in {-1,+1} or {-1,0,+1}, using graph spectral theory. In the second part, we investigate periodic solutions that are spatially localized. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the discrete φ4 equation to the graph nonlinear Schrödinger equation and by Fourier analysis. The results of this thesis relate nonlinear dynamics to graph spectral theory
Zhang, Xiaohong. "Optimal feedback control for nonlinear discrete systems and applications to optimal control of nonlinear periodic ordinary differential equations." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40185.
Повний текст джерелаSteinhauer, Mark. "On analysis of some nonlinear systems of partial differential equations of continuum mechanics." Bonn : Mathematisches Institut der Universität, 2003. http://catalog.hathitrust.org/api/volumes/oclc/54890745.html.
Повний текст джерелаChen, Yahao. "Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR04.
Повний текст джерелаIn the first part of this thesis, we study linear differential-algebraic equations (shortly, DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed problems and obtained results are summarized as follows. 1. Geometric connections between linear DAEs and linear ODE control systems ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an ODECS defined up to a coordinates change, a feedback transformation and an output injection. Then we compare the Wong sequences of a DAE with invariant subspaces of its explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspondence and their invariants (indices and subspaces) are related. Furthermore, we define the internal equivalence of two DAEs and show its difference with the external equivalence by discussing their relations with internal regularity, i.e., the existence and uniqueness of solutions. 2. Transform a linear DAECS into its feedback canonical form via the explicitation with driving variables. We study connections between the feedback canonical form FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse canonical form MCF of ODECSs. In order to connect DAECSs with ODECSs, we use a procedure named explicitation (with driving variables). This procedure attaches a class of ODECSs with two kinds of inputs (the original control input and the vector of driving variables) to a given DAECS. On the other hand, for classical linear ODECSs (without driving variables), we propose a Morse triangular form MTF to modify the construction of the classical MCF. Based on the MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to transform a given DAECS into its FBCF. This algorithm is based on the extended MCF of an ODECS given by the explication procedure. Finally, a numerical example is given to show the structure and efficiency of the proposed algorithm. For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems: 3. Explicitations, external and internal analysis, and normal forms of nonlinear DAEs. We generalize the two explicitation procedures (with or without driving variable) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by showing their relations with the existence and uniqueness of solutions (internal regularity). Then we show that the internal analysis of nonlinear DAEs is closely related to the zero dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear generalization of the Weierstrass form WE is proposed based on the zero dynamics of a nonlinear ODECS given by the explicitation procedure
Zhang, Jin. "Identification of nonlinear structural dynamical system." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/12270.
Повний текст джерелаDi, Cosmo Jonathan. "Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209863.
Повний текст джерелаIn this thesis, we have been interested in standing waves, which satisfy an elliptic partial differential equation. When this equation is seen as a singularly perturbed problem, its solutions concentrate, in the sense that they converge uniformly to zero outside some concentration set, while they remain positive on this set.
We have obtained three kind of new results. Firstly, under symmetry assumptions, we have found solutions concentrating on a sphere. Secondly, we have obtained the same type of solutions for the Schrödinger-Poisson system. The method consists in applying the mountain pass theorem to a penalized problem. Thirdly, we have proved the existence of solutions of the nonlinear Schrödinger equation concentrating at a local maximum of the potential. These solutions are found by a more general minimax principle. Our results are characterized by very weak assumptions on the potential./
L'équation de Schrödinger non-linéaire apparaît dans différents domaines de la physique, par exemple dans la théorie des condensats de Bose-Einstein ou dans des modèles de propagation d'ondes. D'un point de vue mathématique, l'étude de cette équation est intéressante et délicate, notamment parce qu'elle peut posséder un ensemble très riche de solutions avec des comportements variés.
Dans cette thèse ,nous nous sommes intéressés aux ondes stationnaires, qui satisfont une équation aux dérivées partielles elliptique. Lorsque cette équation est vue comme un problème de perturbations singulières, ses solutions se concentrent, dans le sens où elles tendent uniformément vers zéro en dehors d'un certain ensemble de concentration, tout en restant positives sur cet ensemble.
Nous avons obtenu trois types de résultats nouveaux. Premièrement, sous des hypothèses de symétrie, nous avons trouvé des solutions qui se concentrent sur une sphère. Deuxièmement, nous avons obtenu le même type de solutions pour le système de Schrödinger-Poisson. La méthode consiste à appliquer le théorème du col à un problème pénalisé. Troisièmement, nous avons démontré l'existence de solutions de l'équation de Schrödinger non-linéaire qui se concentrent en un maximum local du potentiel. Ces solutions sont obtenues par un principe de minimax plus général. Nos résultats se caractérisent par des hypothèses très faibles sur le potentiel.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Chan, Chuen Lit. "A perturbation-incremental (PI) method for strongly non-linear oscillators and systems of delay differential equations /." access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b1988767xa.pdf.
Повний текст джерела"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 121-133)
Lazaryan, Shushan, Nika LAzaryan, and Nika Lazaryan. "Discrete Nonlinear Planar Systems and Applications to Biological Population Models." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/4025.
Повний текст джерелаNersesov, Sergey G. "Nonlinear Impulsive and Hybrid Dynamical Systems." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.
Повний текст джерелаZhao, Yaxi. "Numerical solutions of nonlinear parabolic problems using combined-block iterative methods /." Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/zhaoy/yaxizhao.pdf.
Повний текст джерелаPereira, da Silva João Gustavo [Verfasser]. "Modelling Flash Sintering Using Systems of Nonlinear Differential Equations / João Gustavo Pereira da Silva." München : Verlag Dr. Hut, 2019. http://d-nb.info/1190421836/34.
Повний текст джерелаSakurai, Atsunori. "Exploring Nonlinear Responses of Quantum Dissipative Systems from Reduced Hierarchy Equations of Motion Approach." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/179368.
Повний текст джерелаYang, Lixiang. "Modeling Waves in Linear and Nonlinear Solids by First-Order Hyperbolic Differential Equations." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1303846979.
Повний текст джерелаGerdin, Markus. "Identification and Estimation for Models Described by Differential-Algebraic Equations." Doctoral thesis, Linköping : Department of Electrical Engineering, Linköpings universitet, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7600.
Повний текст джерелаCimen, Tayfun. "Global optimal feedback control of nonlinear systems and viscosity solutions of Hamilton-Jacobi-Bellman equations." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289660.
Повний текст джерелаSmith, Todd Blanton. "Variational embedded solitons, and traveling wavetrains generated by generalized Hopf bifurcations, in some NLPDE systems." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5042.
Повний текст джерелаID: 029809927; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 121-129).
Ph.D.
Doctorate
Mathematics
Sciences
Gilmour, Isla. "Nonlinear model evaluation : ɩ-shadowing, probabilistic prediction and weather forecasting". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298797.
Повний текст джерелаSOAVE, NICOLA. "Variational and geometric methods for nonlinear differential equations." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49889.
Повний текст джерелаDurmaz, Burak. "Sliding Mode Control Of Linearly Actuated Nonlinear Systems." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610666/index.pdf.
Повний текст джерелаBradley, Aoibhinn Maire. "Analysis of nonlinear spatio-temporal partial differential equations : applications to host-parasite systems and bubble growth." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24405.
Повний текст джерела