Добірка наукової літератури з теми "Nonlinear suspension"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonlinear suspension".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nonlinear suspension"
Hua, CR, Y. Zhao, ZW Lu, and H. Ouyang. "Random vibration of vehicle with hysteretic nonlinear suspension under road roughness excitation." Advances in Mechanical Engineering 10, no. 1 (January 2018): 168781401775122. http://dx.doi.org/10.1177/1687814017751222.
Повний текст джерелаShannan, J. E., and M. J. Vanderploeg. "A Vehicle Handling Model With Active Suspensions." Journal of Mechanisms, Transmissions, and Automation in Design 111, no. 3 (September 1, 1989): 375–81. http://dx.doi.org/10.1115/1.3259009.
Повний текст джерелаMetwalli, S. M. "Optimum Nonlinear Suspension Systems." Journal of Mechanisms, Transmissions, and Automation in Design 108, no. 2 (June 1, 1986): 197–202. http://dx.doi.org/10.1115/1.3260802.
Повний текст джерелаWan, Yi, and Joseph M. Schimmels. "Improved Vibration Isolating Seat Suspension Designs Based on Position-Dependent Nonlinear Stiffness and Damping Characteristics." Journal of Dynamic Systems, Measurement, and Control 125, no. 3 (September 1, 2003): 330–38. http://dx.doi.org/10.1115/1.1592189.
Повний текст джерелаDahunsi, Olurotimi Akintunde, and Jimoh Olarewaju Pedro. "Nonlinear Active Vehicle Suspension Controller Design using PID Reference Tracking." Journal of the Institute of Industrial Applications Engineers 3, no. 3 (July 25, 2015): 111–20. http://dx.doi.org/10.12792/jiiae.3.111.
Повний текст джерелаHanafi, Dirman, Mohamad Fauzi Zakaria, Rosli Omar, M. Nor M. Than, M. Fua'ad Rahmat, and Rozaimi Ghazali. "Neuro Model Approach for a Quarter Car Passive Suspension Systems." Applied Mechanics and Materials 775 (July 2015): 103–9. http://dx.doi.org/10.4028/www.scientific.net/amm.775.103.
Повний текст джерелаZhu, Zhi Wen, Chang Wei Sui, and Jia Xu. "Nonlinear Dynamic Characteristics of Semi-Active Suspension System with SMA Spring Based on Hysteretic Nonlinear Theory." Key Engineering Materials 458 (December 2010): 265–70. http://dx.doi.org/10.4028/www.scientific.net/kem.458.265.
Повний текст джерелаBuckner, Gregory D., Karl T. Schuetze, and Joe H. Beno. "Intelligent Feedback Linearization for Active Vehicle Suspension Control." Journal of Dynamic Systems, Measurement, and Control 123, no. 4 (July 3, 2000): 727–33. http://dx.doi.org/10.1115/1.1408945.
Повний текст джерелаMalík, Josef. "Nonlinear models of suspension bridges." Journal of Mathematical Analysis and Applications 321, no. 2 (September 2006): 828–50. http://dx.doi.org/10.1016/j.jmaa.2005.08.080.
Повний текст джерелаHassanzadeh, Iraj, Ghasem Alizadeh, Naser Pourqorban Shirjoposht, and Farzad Hashemzadeh. "A New Optimal Nonlinear Approach to Half Car Active Suspension Control." International Journal of Engineering and Technology 2, no. 1 (2010): 78–84. http://dx.doi.org/10.7763/ijet.2010.v2.104.
Повний текст джерелаДисертації з теми "Nonlinear suspension"
Aldair, Abdulshaheed Abdulhammed. "Neurofuzzy controller based full vehicle nonlinear active suspension systems." Thesis, University of Sussex, 2012. http://sro.sussex.ac.uk/id/eprint/38502/.
Повний текст джерелаLarin, Oleksiy O., Oleksii O. Vodka, Ruslan O. Kaidalov, and Volodymyr M. Bashtovoi. "Stochastic Dynamics of the Specialized Vehicle with Nonlinear Suspension." Thesis, NTU "KhPI", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/23647.
Повний текст джерелаOlson, Sean Michael. "Nonlinear compensation of a single degree of freedom magnetic suspension system." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12067.
Повний текст джерелаMarsh, Clive. "A nonlinear control design methodology for computer-controlled vehicle suspension systems." Thesis, Loughborough University, 1992. https://dspace.lboro.ac.uk/2134/27995.
Повний текст джерелаMansour, Kamjou. "Characterizations of optical nonlinearities in carbon black suspension in liquids." Thesis, University of North Texas, 1990. https://digital.library.unt.edu/ark:/67531/metadc332586/.
Повний текст джерелаViarbitskaya, Sviatlana. "Resonance-enhanced Second Harmonic Generation from spherical microparticles in aqueous suspension." Doctoral thesis, Stockholm University, AlbaNova University Center (together with KTH), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7517.
Повний текст джерелаSecond harmonic generation (SHG) is a nonlinear optical effect sensitive to interfaces between materials with inversion symmetry. It is used as an effective tool for detection of the adsorption of a substance to microscopic particles, cells, liposomes, emulsions and similar structures, surface analysis and characterization of microparticles. The scattered second harmonic (SH) intensity from surfaces of suspended microparticles is characterized by its complex angular distribution dependence on the shape, size, and physical and chemical properties of the molecules making up the outer layer of the particles. In particular, the overall scattered SH intensity has been predicted to have a dramatic and nontrivial dependence on the particle size.
Results are reported for aqueous suspensions of polystyrene microspheres with different dye molecules adsorbed on their surfaces. They indicate that the scattered SH power has an oscillatory dependence on the particle size. It is also shown that adsorption of one of the dyes (malachite green) on polystyrene particles is strongly affected when SDS surfactants are added to the solution. For this system a rapid increase of the SH signal with increasing concentration of SDS was observed in the range of low SDS concentration.
Three different theoretical models are used to analyze the observed particle size dependence of SHG. The calculated angular and particle size dependences of the SH scattered power show that the models do not agree very well between each other when the size of the particles is of the order of the fundamental light wavelength, as here. One of the models - nonlinear Mie scattering - predicts oscillatory behaviour of the scattered SH power with the particle size, but fails to reproduce the position of the maxima and minima of the experimentally observed oscillations.
The obtained results on the size dependence of the SH can be used in all applications to increase the count rate by choosing particles of the size for which the SH efficiency was found to the highest. A new effect of cooperative malachite green and SDS interaction at the polystyrene surface can be employed, for example, in the areas of microbiology or biotechnology, where adsorption macromolecules, surfactants and dyes to polystyrene microparticles is widely used.
Kwong, Gordon Houng. "Approximations for Nonlinear Differential Algebraic Equations to Increase Real-time Simulation Efficiency." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/42753.
Повний текст джерелаMaster of Science
Brown, R. D. "The effect of the nonlinear rear suspension on the traction of off-road motorcycles." Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396506.
Повний текст джерелаMohan, Anant. "Nonlinear Investigation of the Use of Controllable Primary Suspensions to Improve Hunting in Railway Vehicles." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/33740.
Повний текст джерелаMaster of Science
Lebel, David. "Statistical inverse problem in nonlinear high-speed train dynamics." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC2189/document.
Повний текст джерелаThe work presented here deals with the development of a health-state monitoring method for high-speed train suspensions using in-service measurements of the train dynamical response by embedded acceleration sensors. A rolling train is a dynamical system excited by the track-geometry irregularities. The suspension elements play a key role for the ride safety and comfort. The train dynamical response being dependent on the suspensions mechanical characteristics, information about the suspensions state can be inferred from acceleration measurements in the train by embedded sensors. This information about the actual suspensions state would allow for providing a more efficient train maintenance. Mathematically, the proposed monitoring solution consists in solving a statistical inverse problem. It is based on a train-dynamics computational model, and takes into account the model uncertainty and the measurement errors. A Bayesian calibration approach is adopted to identify the probability distribution of the mechanical parameters of the suspension elements from joint measurements of the system input (the track-geometry irregularities) and output (the train dynamical response).Classical Bayesian calibration implies the computation of the likelihood function using the stochastic model of the system output and experimental data. To cope with the fact that each run of the computational model is numerically expensive, and because of the functional nature of the system input and output, a novel Bayesian calibration method using a Gaussian-process surrogate model of the likelihood function is proposed. This thesis presents how such a random surrogate model can be used to estimate the probability distribution of the model parameters. The proposed method allows for taking into account the new type of uncertainty induced by the use of a surrogate model, which is necessary to correctly assess the calibration accuracy. The novel Bayesian calibration method has been tested on the railway application and has achieved conclusive results. Numerical experiments were used for validation. The long-term evolution of the suspension mechanical parameters has been studied using actual measurements of the train dynamical response
Книги з теми "Nonlinear suspension"
Gazzola, Filippo. Mathematical Models for Suspension Bridges: Nonlinear Structural Instability. Springer, 2015.
Знайти повний текст джерелаMarsh, Clive. A nonlinear control design methodology for computer-controlled vehicle suspension systems. 1992.
Знайти повний текст джерелаЧастини книг з теми "Nonlinear suspension"
Jing, Dong, Jian-Qiao Sun, Chuan-Bo Ren, and Xiu-hua Zhang. "Multi-Objective Optimization of Active Vehicle Suspension System Control." In Nonlinear Dynamics and Control, 137–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34747-5_14.
Повний текст джерелаIlbeigi, Shahab, and Maxwell Caro. "Application of Nonlinear Displacement-Dependent Dampers in Suspension Systems." In Nonlinear Dynamics, Volume 1, 159–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54404-5_17.
Повний текст джерелаWu, Ligang, Xiaojie Su, and Peng Shi. "Fuzzy Control of Nonlinear Electromagnetic Suspension Systems." In Fuzzy Control Systems with Time-Delay and Stochastic Perturbation, 289–307. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11316-6_13.
Повний текст джерелаSun, Weichao, Huijun Gao, and Peng Shi. "Constrained Active Suspension Control via Nonlinear Feedback Technology." In Advanced Control for Vehicle Active Suspension Systems, 77–109. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15785-2_4.
Повний текст джерелаGazzola, Filippo, and Yongda Wang. "Modeling suspension bridges through the von Kármán quasilinear plate equations." In Contributions to Nonlinear Elliptic Equations and Systems, 269–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19902-3_18.
Повний текст джерелаBellizzi, S., and R. Bouc. "Identification of the Hysteresis Parameters of a Nonlinear Vehicle Suspension Under Random Excitation." In Nonlinear Stochastic Dynamic Engineering Systems, 467–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83334-2_34.
Повний текст джерелаKhazaie, Ali, Najiullah Hussaini, Hormoz Marzbani, and Reza N. Jazar. "Quarter Car Suspension Model with Provision for Loss of Contact with the Road." In Nonlinear Approaches in Engineering Applications, 167–208. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69480-1_7.
Повний текст джерелаSavoskin, Anatoly, and Stanislav Vlasevskii. "Aspects of Railway Vehicles Vibrations with Nonlinear Spring Suspension Characteristics." In VIII International Scientific Siberian Transport Forum, 109–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37916-2_12.
Повний текст джерелаChildress, S., and E. A. Spiegel. "Pattern Formation in a Suspension of Swimming Microorganisms: Nonlinear Aspects." In A Celebration of Mathematical Modeling, 33–52. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0427-4_3.
Повний текст джерелаNagarkar, M. P., and G. J. Vikhe Patil. "GA-Based Multi-objective Optimal Control of Nonlinear Quarter Car Suspension." In Lecture Notes in Mechanical Engineering, 481–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1771-1_52.
Повний текст джерелаТези доповідей конференцій з теми "Nonlinear suspension"
Stahl, Patrick, and G. Nakhaie Jazar. "Frequency Response Analysis of Piecewise Nonlinear Vibration Isolator." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84879.
Повний текст джерелаKarlsson, N., M. Ricci, D. Hrovat, and M. Dahleh. "A suboptimal nonlinear active suspension." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.876980.
Повний текст джерелаKarlsson, N., M. Dahleh, and D. Hrovat. "Nonlinear active suspension with preview." In Proceedings of American Control Conference. IEEE, 2001. http://dx.doi.org/10.1109/acc.2001.946273.
Повний текст джерелаShensky, W., I. Cohanoschi, F. E. Hernandez, E. W. Van Stryland, and D. J. Hagan. "Carbon-black suspension based broadband optical limiter." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/nlo.2002.we22.
Повний текст джерелаGuha, Shekhar, and Wenpeng Chen. "Nonlinear interactions in a liquid suspension." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.thk41.
Повний текст джерелаDae Sung Joo, N. Al-Holou, J. M. Weaver, T. Lahdhiri, and F. Al-Abbas. "Nonlinear modeling of vehicle suspension system." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878784.
Повний текст джерелаYue Zhu, Sihong Zhu, and Lingfei Xiao. "Passivity based nonlinear suspension active control." In 2014 11th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2014. http://dx.doi.org/10.1109/wcica.2014.7053370.
Повний текст джерелаMcEwan, Kenneth J., Philip K. Milsom, and David B. James. "Nonlinear optical effects in carbon suspension." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Christopher M. Lawson. SPIE, 1998. http://dx.doi.org/10.1117/12.326889.
Повний текст джерелаStahl, Patrick, and G. Nakhaie Jazar. "Stability Analysis of a Piecewise Nonlinear Vibration Isolator." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81856.
Повний текст джерелаYousefi, Amirhossein, and Boris Lohmann. "Order reduction of nonlinear hydropneumatic vehicle suspension." In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776847.
Повний текст джерела