Дисертації з теми "Nonlinear optics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Nonlinear optics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
De, Matos Christiano Jose Santiago. "Nonlinear optics in specialty optical fibres." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419770.
Повний текст джерелаGao, Xuesong. "Quantum Nonlinear Optics." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1564662783494271.
Повний текст джерелаGoldstein, Elena Vladimirovna 1962. "Nonlinear atom optics." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/289255.
Повний текст джерелаJonsson, Fredrik. "The nonlinear optics of magneto-optic media." Doctoral thesis, KTH, Physics, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2967.
Повний текст джерелаFORTENBERRY, RANCE MORGAN. "NONLINEAR OPTICAL PHENOMENA IN ZINC OXIDE WAVEGUIDES (INTEGRATED OPTICS, NONLINEAR COUPLING)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183951.
Повний текст джерелаMeier, Joachim. "DISCRETE NONLINEAR WAVE PROPAGATION IN KERR NONLINEAR MEDIA." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2900.
Повний текст джерелаPh.D.
Other
Optics and Photonics
Optics
Yuan, Shuai. "Filamentation induced nonlinear optics." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25268.
Повний текст джерелаFemtosecond laser filamentation, which originates from a dynamic equilibrium between Kerr self-focusing and defocusing by the self-generated plasma produced by multiphoton/tunnel ionization of air molecules, has attracted a lot of scientific applications such as remote sensing of atmospheric pollutants, molecular identification by the alignment of molecules, etc. However, there are many nonlinear processes taking place during filamentation. From the application point of view, it is important to have a good understanding of the detailed physics behind filamentation induced nonlinear optics. Since there are many nonlinear phenomena and applications for filamentation, the thesis only focuses on few aspects of filamentation. Those are: the polarization rotation in atomic/molecular gases, the lasing action of water molecules in air, the humidity calibration through the filament-induced spectroscopy, as well as the fluorescence enhancement by plasma grating. The polarization rotation of an initially linearly polarized probe pulse was studied in atomic/molecular gases. In atomic gases, the ultrafast birefringence induced by Kerr effect was quantitatively measured. In molecular gases, the birefringence and the polarization states of the output probe were modulated at the rotational revival of molecule. We also experimentally investigate the filament-induced fluorescence from the dissociated fragments in air. Fluorescence emissions from OH free radicals at 308.9 nm and NH free radicals at 336.0 nm were observed in air. The backscattered fluorescence from both OH and NH exhibited an exponential increase with increasing filament length, indicating amplified spontaneous emission. We have further investigated the filament-induced fluorescence spectroscopy from a plasma grating. The plasma grating was generated by non-collinearly overlapping temporally synchronized filaments in air. A series of spectral lines from the excited fragments of CN was observed. The fluorescence intensity from CN radicals in plasma grating was much stronger as compared to the case of temporally separated filaments.
Hu, Quanyuan. "Synthesis, characterization and NLO properties of octupolar molecules /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202005%20HU.
Повний текст джерелаFu, Ling. "Fibre-optic nonlinear optical microscopy and endoscopy." Australasian Digital Thesis Program, 2007. http://adt.lib.swin.edu.au/public/adt-VSWT20070521.155004/index.html.
Повний текст джерелаA thesis submitted for the degree of Doctor of Philosophy, Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2007. Typescript. Bibliography: p. 146-162.
Tsangaris, Charalambos. "Transverse effects in optical cavities and nonlinear optics." Thesis, Imperial College London, 2005. http://hdl.handle.net/10044/1/8799.
Повний текст джерелаNorris, Greg. "Experimental nonlinear optics for applications in optical microscopy." Thesis, University of Strathclyde, 2011. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16932.
Повний текст джерелаHerrera, Oscar Dario. "Nonlinear Photonics in Waveguides for Telecommunications." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/338755.
Повний текст джерелаNovikova, Irina Borisovna. "Nonlinear magneto-optic effects in optically dense Rb vapor." Texas A&M University, 2004. http://hdl.handle.net/1969.1/364.
Повний текст джерелаLiu, Xunmimg. "Nonlinear dynamics in quantum optics /." St. Lucia, Qld, 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17835.pdf.
Повний текст джерелаLi, Ruo-Ding. "Model analysis in nonlinear optics." Doctoral thesis, Universite Libre de Bruxelles, 1991. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213005.
Повний текст джерелаTurner, Peter D. "Organic materials for nonlinear optics /." Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09pht951.pdf.
Повний текст джерелаAnscombe, Marcel Philip. "Nonlinear optics with atomic coherence." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404378.
Повний текст джерелаGriffiths, J. "Crystal engineering for nonlinear optics." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599722.
Повний текст джерелаMcIntyre, Ross. "Pattern formation in nonlinear optics." Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/716.
Повний текст джерелаWalmsley, M. "Ultrafast nonlinear optics in semiconductors." Thesis, Durham University, 1993. http://etheses.dur.ac.uk/5498/.
Повний текст джерелаHameed-Muhammed, Muhammed Subhi. "Novel composites for nonlinear optics." Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301715.
Повний текст джерелаGeddes, John Bruce. "Patterns, fishing and nonlinear optics." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186972.
Повний текст джерелаAgnew, Amalia. "Quantum-Chemical Investigations of Second- and Third-Order Nonlinear Optical Chromophores for Electro-Optic and All-Optical Switching Applications." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11575.
Повний текст джерелаMOSHREFZADEH, ROBERT SHAHRAM. "THEORY AND FABRICATION OF SUB-MICRON GRATINGS ON NONLINEAR OPTICAL WAVEGUIDES." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184138.
Повний текст джерелаSvensson, Barbro Christina. "Nonlinear distributed couplers in zinc-sulfide waveguides." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184500.
Повний текст джерелаJohnston, Wesley James. "Nonlinear optics in Bragg-spaced quantum wells." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/826.
Повний текст джерелаRochford, Kent Blair. "Linear and nonlinear optical properties of polydiacetylene waveguides." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185340.
Повний текст джерелаKeilbach, Kevin Anthony 1963. "Nonlinear prism coupling in an organic waveguide." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276875.
Повний текст джерелаEvans, Christopher Courtney. "Nonlinear optics in titanium dioxide: from bulk to integrated optical devices." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11167.
Повний текст джерелаEngineering and Applied Sciences
Manzoni, Marco Tommaso. "New systems for quantum nonlinear optics." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461495.
Повний текст джерелаLos fotones que viajan por el espacio libre no interactúan entre sí. Esta característica los hace perfectos candidatos para transportar la información cuántica a largas distancias. Por otro lado, el procesamiento de la información que codifican requiere mecanismos de interacción. En los últimos años se han realizado esfuerzos crecientes para realizar interacciones fuertes y controladas entre los fotones y para comprender las leyes subyacentes que describen los fenómenos que pueden surgir, generando así el nuevo campo de la "óptica cuántica no lineal". Mientras que los materiales tridimensionales tienen coeficientes no lineales extremadamente débiles, se pueden obtener interacciones entre los fotones haciéndolos interactuar con átomos individuales, que son objetos intrínsecamente no lineales, teniendo la capacidad de absorber únicamente un solo fotón a la vez. La realización de interacciones determinísticas entre fotones y átomos es uno de los principales retos de la óptica cuántica no lineal. Para eludir las limitaciones debidas a la pequeña sección eficaz óptica de los átomos y el límite de difracción en el espacio libre, se han aplicado diferentes estrategias, entre ellas el uso de cavidades (CQED), de colectividades atómicas y, más recientemente, de nanoestructuras dieléctricas capaces de confinar la luz sin desenfocarse, permitiendo así la interacción con átomos atrapados en la proximidad de esas estructuras. Mientras que para el caso de la CQED se han desarrollado potentes herramientas teóricas para tratar las interacciones de los fotones, en el caso de colectividades atómicas hay una falta general de métodos teóricos más allá del régimen lineal. Esta relativa falta de comprensión también implica que podría haber nuevos fenómenos físicos interesantes que hasta ahora no se han identificado. El objetivo general de esta tesis es explorar estos temas con mayor detalle. En el capítulo 2 de esta tesis desarrollamos un nuevo formalismo para calcular las propiedades de la luz cuántica cuando interactúa con sistemas atómicos. El método consiste en utilizar un"`modelo de espines" que mapea un problema de propagación de luz cuasi unidimensional (1D) a la dinámica de un sistema abierto unidimensional de espines que interactúan entre sí, donde todas las correlaciones de fotones se obtienen a partir de las de los espines. La dinámica de los espines se puede resolver numéricamente utilizando la caja de herramientas de los estados producto de matrices (MPS), proporcionando así una técnica para estudiar los fotones que interactúan fuertemente en el regimen de la física de muchos cuerpos. En el capítulo 3 se investiga la posibilidad de crear fases exóticas de la materia utilizando la interfaz entre guía de ondas de cristales fotónicos (PCW) y átomos recientemente realizada experimentalmente, donde los modos de la banda de frecuencias prohibidas de la PCW se utilizan para mediar las interacciones de largo alcance entre los átomos. Encontramos un rico diagrama de fases de órdenes emergentes. En el capítulo 4 se investiga la posibilidad de implementar procesos ópticos cuánticos no lineales de segundo orden con nano-estructuras de grafeno, como una alternativa más robusta al uso de sistemas atómicos. Cuantificamos las propiedades no lineales de segundo orden, mostrando que el estrecho confinamiento da lugar a extraordinarias fuerzas de interacción a nivel de un solo fotón y predecimos que un diseño apropiado de las nano-estructuras del grafeno permitiría generar el segundo armónico con una eficiencia comparable a la de los cristales no lineales de última generación. En el capítulo 5, investigamos cómo la emisión cooperativa en memorias cuánticas realizadas con reticulos atómicos afecta su eficiencia, encontrando el impresionante resultado de que una memoria realizada con 16 átomos puede tener la misma eficiencia que un gas cuántico atómico de profundidad óptica mayor que 100.
Hulshof, Johannes Bernardus Everardus. "Materials for second order nonlinear optics." [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 1995. http://irs.ub.rug.nl/ppn/.
Повний текст джерелаBlake, Iain M. "Conjugated porphyrin systems for nonlinear optics." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365889.
Повний текст джерелаNaguleswaran, Siva. "Time reversal symmetry in nonlinear optics." Thesis, University of Canterbury. Physics, 1998. http://hdl.handle.net/10092/8166.
Повний текст джерелаStensson, Katarina. "Quantum Optics in 2D Nonlinear Lattices." Thesis, KTH, Tillämpad fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145893.
Повний текст джерелаHarvey, Thomas Grierson. "Nonlinear optics of the polydiacetylene pTS." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/874.
Повний текст джерелаRyder, Elaine. "Nonlinear guided waves in fibre optics." Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/14342.
Повний текст джерелаDhayal, Suman. "Nonlinear and Quantum Optics Near Nanoparticles." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822820/.
Повний текст джерелаCompton, Ryan Edward. "Nonlinear Optics in Non-Equilibrium Microplasmas." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/123146.
Повний текст джерелаPh.D.
This dissertation details the nature of subnanosecond laser-induced microplasma dynamics, particularly concerning the evolution of the electron temperature and concentration. Central to this development is the advent of a femtosecond four-wave mixing (FWM) spectroscopic method. FWM (in the form of coherent anti-Stokes Raman scattering (CARS)) measurements are performed on the fundamental oxygen vibrational transition. An analytical expression is provided that accounts for the resonant and nonresonant contributions to the CARS signal generated from the interaction of broadband pump and Stokes pulses. The inherent phase mismatch is also accounted for, resulting in quantitative agreement between experiment and theory. FWM is then used to measure the early-time electron dynamics in the noble gas series from He to Xe following irradiation by an intense (10^14 Wcm-2) nonresonant 80 fs laser pulse. An electron impact ionization cooling model is presented to determine the evolution of electron kinetic energies following ionization. Kinetic energies are predicted to evolve from > 20 eV to < 1 eV in the first 1.5 ns. The initial degree of ionization is determined experimentally via measurement of the Bremsstrahlung background emission, and modeled with a modified ADK theory based on tunnel ionization. Combined, these two descriptions account for the evolution of both the electron temperature and concentration and provide quantitative agreement with the FWM measurements. The model is further tested with measurements of the gas pressure and pump laser intensity on the electron dynamics. The FWM experiments are concluded with a qualitative discussion of dissociative recombination dynamics occurring in molecular microplasmas. The microplasma environment is used as a source for the generation of two-level systems in the excited state manifold of atomic oxygen and argon. These two-level systems are coupled using moderately intense ~1 ps near-infrared (and near-resonant) pulses, resulting in Rabi sidebands with unprecedentedly large shifts in excess of 90 meV. A time-dependent generalized Rabi-cycling model is developed to account for the time-dependence of the laser electric field and subsequently the Rabi frequency. The Rabi radiation is determined to be coherent and tunable (up to 200 meV), providing a new method for ultrashort pulse generation. The dependence of the spectral positions of the Rabi sidebands on laser intensity affords the opportunity to simultaneously determine the ratios of transition dipole moments for the states accessed.
Temple University--Theses
Redondo, Loures Cristian. "Negative frequency effects in nonlinear optics." Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3288.
Повний текст джерелаCLEMENTI, MARCO. "Nonlinear Optics in Photonic Crystal Cavities." Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1317094.
Повний текст джерелаTurner-Valle, Jennifer 1970. "Nonlinear multilayers as optical limiters." Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/288788.
Повний текст джерелаNee, Phillip Tsefung. "Optical frequency division via periodically-poled-LiNbO₃-based nonlinear optics." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80486.
Повний текст джерелаIncludes bibliographical references (leaves 186-194).
by Philip Tsefung Nee.
Ph.D.
Cui, A. G. (Aiguo G. ). "Nonlinear Optical Properties of GaAs at 1.06 micron, picosecond Pulse Investigation and Applications." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc332605/.
Повний текст джерелаAlam, Mohammad Zahirul. "Experiments in Nonlinear Optics with Epsilon-Near-Zero Materials." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41088.
Повний текст джерелаHessenius, Chris. "Novel Cavities and Functionality in High-Power High-Brightness Semiconductor Vertical External Cavity Surface Emitting Lasers." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/301667.
Повний текст джерелаSabra, Ahmad. "Nonlinear PDE and Optical Surfaces Design." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/345398.
Повний текст джерелаPh.D.
We introduce two models to design near field reflectors in R^3 that solve an inverse problem in radiometry, taking into account the inverse square law of irradiance. The problem leads to a Monge-Ampere type inequality. The surfaces in the first model are strictly convex and require to be far from the source to avoid obstruction. In the second model, the reflectors are neither convex nor concave and do not block the rays even if they are close to the source.
Temple University--Theses
Hart, Darlene Louise. "Nonlinear dynamics of multiwave mixing in an optical fiber." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30047.
Повний текст джерелаRodgers, John Scott. "Multimode interference in a Kerr nonlinear material." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/13365.
Повний текст джерелаChen, Xin. "Managing light in engineered nonlinear optical structures." Phd thesis, Canberra, ACT : The Australian National University, 2017. http://hdl.handle.net/1885/142957.
Повний текст джерелаFeaver, Ryan K. "Longwave-Infrared Optical Parametric Oscillator in Orientation-Patterned Gallium Arsenide." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1324048074.
Повний текст джерела