Статті в журналах з теми "Nondegenerate semiconductors"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nondegenerate semiconductors.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nondegenerate semiconductors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Sheik-Bahae, M., J. Wang, and E. W. Van Stryland. "Nondegenerate optical Kerr effect in semiconductors." IEEE Journal of Quantum Electronics 30, no. 2 (1994): 249–55. http://dx.doi.org/10.1109/3.283767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Min, H. S. "Steady‐state Nyquist theorem for nondegenerate semiconductors." Journal of Applied Physics 64, no. 11 (December 1988): 6339–44. http://dx.doi.org/10.1063/1.342096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Peng, Matthew Reichert, David J. Hagan, and Eric W. Van Stryland. "Dispersion of nondegenerate nonlinear refraction in semiconductors." Optics Express 24, no. 22 (October 17, 2016): 24907. http://dx.doi.org/10.1364/oe.24.024907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ruvinskii, M. A., O. B. Kostyuk, and B. M. Ruvinskii. "The Kinetic Effects, Caused by Thickness Fluctuations of Quantum Semiconductor Wire." Фізика і хімія твердого тіла 17, no. 1 (March 15, 2016): 7–10. http://dx.doi.org/10.15330/pcss.17.1.7-10.

Повний текст джерела
Анотація:
It was theoretically determined the electrical conductivity, thermopower and thermal conductivity of semiconductor quantum wire conditioned by a random field of Gaussian fluctuations of wire thickness. We present the results for cases nondegenerate and generate statistics of carriers. The considered mechanism of relaxation of the carriers is essential for sufficiently thin and clean wire from the А3В5 and А4В6 type of semiconductors at low temperatures. The quantum size effects that are typical of quasi-one-dimensional systems were revealed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

FUCHS, F., and F. POUPAUD. "ASYMPTOTICAL AND NUMERICAL ANALYSIS OF DEGENERACY EFFECTS ON THE DRIFT-DIFFUSION EQUATIONS FOR SEMICONDUCTORS." Mathematical Models and Methods in Applied Sciences 05, no. 08 (December 1995): 1093–111. http://dx.doi.org/10.1142/s0218202595000577.

Повний текст джерела
Анотація:
A current approximation for modeling electron transport in semiconductor devices is to assume small electron density. Through this method nondegenerate models are obtained. Here we present an asymptotical analysis of that approximation on the drift-diffusion equation. The numerical approximations of the degenerate and nondegenerate equations are then compared. A modified Scharfetter-Gummel scheme which integrates the degenerate drift-diffusion equation is proposed for comparison.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

JÜNGEL, ANSGAR. "ON THE EXISTENCE AND UNIQUENESS OF TRANSIENT SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS." Mathematical Models and Methods in Applied Sciences 04, no. 05 (October 1994): 677–703. http://dx.doi.org/10.1142/s0218202594000388.

Повний текст джерела
Анотація:
We analyze the degenerate transient multi-dimensional quasi-hydrodynamic model for semiconductors with general recombination rate. We present existence results for general nonlinear diffusivities for the nondegenerate and the degenerate Dirichlet-Neumann mixed boundary value problem. Uniqueness of solutions of the nondegenerate system can be proved in the Dirichlet boundary case. Concerning the degenerate problem uniqueness can only be shown under some conditions on the initial and boundary data or on the electric field.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Min, H. S. "A unified theory of noise in nondegenerate semiconductors." Journal of Applied Physics 61, no. 9 (May 1987): 4549–65. http://dx.doi.org/10.1063/1.338389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Combescot, Monique, and Roland Combescot. "Comment on ‘‘Electron-electron scattering in nondegenerate semiconductors’’." Physical Review Letters 59, no. 3 (July 20, 1987): 375. http://dx.doi.org/10.1103/physrevlett.59.375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hutchings, D. C., and E. W. Van Stryland. "Nondegenerate two-photon absorption in zinc blende semiconductors." Journal of the Optical Society of America B 9, no. 11 (November 1, 1992): 2065. http://dx.doi.org/10.1364/josab.9.002065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Reggiani, Lino, Paolo Lugli, and A. P. Jauho. "Quantum kinetic equation for electronic transport in nondegenerate semiconductors." Physical Review B 36, no. 12 (October 15, 1987): 6602–8. http://dx.doi.org/10.1103/physrevb.36.6602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Behura, Sanjay, and Vikas Berry. "Interfacial Nondegenerate Doping of MoS2and Other Two-Dimensional Semiconductors." ACS Nano 9, no. 3 (March 16, 2015): 2227–30. http://dx.doi.org/10.1021/acsnano.5b01442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Paul, S. S., and D. P. Bhattacharya. "Harmonic generation in nondegenerate semiconductors at low lattice temperature." Journal of Applied Physics 64, no. 9 (November 1988): 4554–61. http://dx.doi.org/10.1063/1.341257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Paul, A. E., M. Lindberg, S. An, M. Sargent III, and S. W. Koch. "Quantum theory of nondegenerate four-wave mixing in semiconductors." Physical Review A 42, no. 3 (August 1, 1990): 1725–36. http://dx.doi.org/10.1103/physreva.42.1725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wu, Chhi-Chong, and Jensan Tsai. "Magnetoacoustic effect on linear conductivity tensors in nondegenerate semiconductors." Journal of Low Temperature Physics 61, no. 1-2 (October 1985): 55–67. http://dx.doi.org/10.1007/bf00682730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Cirloganu, Claudiu M., Lazaro A. Padilha, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland. "Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]." Optics Express 19, no. 23 (October 28, 2011): 22951. http://dx.doi.org/10.1364/oe.19.022951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fishman, D. A., C. M. Cirloganu, S. Webster, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland. "Extremely Nondegenerate Two-Photon Absorption and Subbandgap Detection in Semiconductors." Optics and Photonics News 22, no. 12 (December 1, 2011): 25. http://dx.doi.org/10.1364/opn.22.12.000025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Cundiff, S. T., M. Koch, W. H. Knox, J. Shah, and W. Stolz. "Optical Coherence in Semiconductors: Strong Emission Mediated by Nondegenerate Interactions." Physical Review Letters 77, no. 6 (August 5, 1996): 1107–10. http://dx.doi.org/10.1103/physrevlett.77.1107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Wu, Chhi-Chong, and Jensan Tsai. "Nonlinear response of electron-phonon interaction inn-type nondegenerate piezoelectric semiconductors." Journal of Low Temperature Physics 68, no. 5-6 (September 1987): 353–70. http://dx.doi.org/10.1007/bf00682302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bauers, Sage R., Aaron Holder, Wenhao Sun, Celeste L. Melamed, Rachel Woods-Robinson, John Mangum, John Perkins, et al. "Ternary nitride semiconductors in the rocksalt crystal structure." Proceedings of the National Academy of Sciences 116, no. 30 (July 3, 2019): 14829–34. http://dx.doi.org/10.1073/pnas.1904926116.

Повний текст джерела
Анотація:
Inorganic nitrides with wurtzite crystal structures are well-known semiconductors used in optical and electronic devices. In contrast, rocksalt-structured nitrides are known for their superconducting and refractory properties. Breaking this dichotomy, here we report ternary nitride semiconductors with rocksalt crystal structures, remarkable electronic properties, and the general chemical formula MgxTM1−xN (TM = Ti, Zr, Hf, Nb). Our experiments show that these materials form over a broad metal composition range, and that Mg-rich compositions are nondegenerate semiconductors with visible-range optical absorption onsets (1.8 to 2.1 eV) and up to 100 cm2 V−1⋅s−1 electron mobility for MgZrN2 grown on MgO substrates. Complementary ab initio calculations reveal that these materials have disorder-tunable optical absorption, large dielectric constants, and electronic bandgaps that are relatively insensitive to disorder. These ternary MgxTM1−xN semiconductors are also structurally compatible both with binary TMN superconductors and main-group nitride semiconductors along certain crystallographic orientations. Overall, these results highlight MgxTM1−xN as a class of materials combining the semiconducting properties of main-group wurtzite nitrides and rocksalt structure of superconducting transition-metal nitrides.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Furuta, Mamoru, and Yusaku Magari. "(Invited, Digital Presentation) Nondegenerate Hydrogen-Doped Polycrystalline Indium Oxide (InOx:H) Thin Films for High-Mobility Thin Film Transistors." ECS Meeting Abstracts MA2022-02, no. 35 (October 9, 2022): 1266. http://dx.doi.org/10.1149/ma2022-02351266mtgabs.

Повний текст джерела
Анотація:
Transparent metal oxide semiconductors (OSs) have been extensively investigated for use as the active channel layer of thin film transistors (TFTs) for next-generation flat-panel displays, nonvolatile memories, image sensors, and pH sensors, to name a few. Among OSs, the amorphous In–Ga–Zn–O (IGZO) has attracted particular attention for TFT applications owing to its high field effect mobility (μFE) of more than 10 cm2V−1s−1, steep subthreshold swing (S.S.), extremely low off-state current, large-area uniformity, and good bias stress stability. Although the μFE of an IGZO TFT is approximately one order of magnitude higher than that of an amorphous Si TFT, further improvement of the μFE of OS TFTs is required to expand their range of applications as an alternative to polycrystalline Si TFT. Single-crystalline In2O3 has a Hall mobility as high as 160 cm2V−1s−1, which makes amorphous (a-) or polycrystalline (poly-) InOx a potential material for enhancing the μFE of OS TFTs. However, undoped InOx thin films is known as a degenerate semiconductor with high background electron density of over 1020 cm-3, which is attributed to the presence of native defects, such as oxygen vacancies, making them unsuitable for a channel material of OS TFTs. In this presentation, nondegenerate hydrogen-doped polycrystalline InOx (poly-InOx:H) thin films were successfully prepared by low-temperature solid phase crystallization (SPC). A degenerate amorphous InOx:H thin film was deposited by sputtering in Ar, O2, and H2 gases, and an amorphous to polycrystalline phase transition (SPC) of the film was achieved after PDA at more than 175 °C. By PDA at 250 °C in air, a nondegenerate poly-InOx:H film could be obtained with a carrier density as low as 2.4 × 1017 cm−3, which is approximately three orders of magnitude lower than that of the initial a-InOx:H film. The TFTs with a 50 nm thick nondegenerate poly-InOx:H channel could be fully depleted by a gate electric field. A maximum μFE of 125.7 cm2V−1s−1 was exhibited by the TFT with the poly-InOx:H channel. The use of a nondegenerate poly-InOx:H film is a promising approach to boost the μFE of OS TFTs.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Betz, M., G. Göger, A. Leitenstorfer, K. Ortner, C. R. Becker, G. Böhm, and A. Laubereau. "Ultrafast electron-phonon scattering in semiconductors studied by nondegenerate four-wave mixing." Physical Review B 60, no. 16 (October 15, 1999): R11265—R11268. http://dx.doi.org/10.1103/physrevb.60.r11265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Vinke, E. �. "Influence of interelectron interaction on the forbidden bandwidth of nondegenerate narrowband semiconductors." Soviet Physics Journal 30, no. 6 (June 1987): 539–43. http://dx.doi.org/10.1007/bf00897343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chang, K. M. "Activity Coefficients of Electrons and Holes in Semiconductors with Nonuniform Composition: I . Nondegenerate." Journal of The Electrochemical Society 135, no. 11 (November 1, 1988): 2859–62. http://dx.doi.org/10.1149/1.2095447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Reggiani, Lino, Paolo Lugli, and Vladimir Mitin. "Generalization of Nyquist-Einstein relationship to conditions far from equilibrium in nondegenerate semiconductors." Physical Review Letters 60, no. 8 (February 22, 1988): 736–39. http://dx.doi.org/10.1103/physrevlett.60.736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hung, Nguyen T., Ahmad R. T. Nugraha, and Riichiro Saito. "Size effect in thermoelectric power factor of nondegenerate and degenerate low-dimensional semiconductors." Materials Today: Proceedings 4, no. 12 (2017): 12368–73. http://dx.doi.org/10.1016/j.matpr.2017.10.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

OCKMAN, NATHAN, WUBAO WANG, and R. R. ALFANO. "APPLICATIONS OF ULTRAFAST LASER SPECTROSCOPY TO THE STUDY OF SEMICONDUCTOR PHYSICS." International Journal of Modern Physics B 05, no. 20 (December 1991): 3165–234. http://dx.doi.org/10.1142/s0217979291001255.

Повний текст джерела
Анотація:
This article reviews the application of some of the principal methods of picosecond and femtosecond laser spectroscopy to the investigation of the dynamics of carriers, phonons and surface structure in semiconductors. The measurement of the temporal evolution of photoinduced luminescence, absorption, reflection and scattering in semiconductors makes it possible to obtain the lifetimes of photogenerated electrons, holes, excitons and phonons in both the bulk and quantum wells and superlattice structures. The information produced by these studies is necessary for the basic understanding of the underlying physics of semiconductors. In addition, the parameters obtained from these studies are needed for evaluating ultrafast transport, switching, photoconductive response and imaging in semiconductor materials, which will determine their limitations for use in high-speed and high-frequency devices and computers. For measuring time resolved luminescence, the principal techniques used, namely, the streak camera, the optical Kerr gate and the up-conversion gate are thoroughly discussed. Several pump and probe methods are described for the determination of time resolved absorption, reflection and Raman scattering. For absorption measurements where the probe wavelength differs from the pump, the former is generated in nonlinear media by means of stimulated Raman scattering and the supercontinuum for the UV and visible regions and by parametric and difference frequency generation for the near- and mid-IR. Nonlinear optics techniques considered are degenerate and nondegenerate four-wave mixing and transient grattings among which photon echoes yield the momentum relaxation of hot electrons. Coherent anti-Stokes Raman scattering (CARS) and phase conjugate Raman scattering (PC) are described to determine phonon dephasing times and the nonlinear susceptibility, χ3.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

BERTONCINI, RITA. "NONEQUILIBRIUM GREEN’S FUNCTIONS FOR HIGH-FIELD QUANTUM TRANSPORT THEORY." International Journal of Modern Physics B 06, no. 22 (November 20, 1992): 3441–81. http://dx.doi.org/10.1142/s0217979292001584.

Повний текст джерела
Анотація:
A formulation of the Kadanoff-Baym-Keldysh theory of nonequilibrium quantum statistical mechanics is developed in order to describe nonperturbatively the effects of the electric field on electron-phonon scattering in nondegenerate semiconductors. We derive an analytic, gauge-invariant model for the spectral density of energy states that accounts for both intracollisional field effect and collisional broadening simultaneously. A kinetic equation for the quantum distribution function is derived and solved numerically. The nonlinear drift velocity versus applied field characteristics is also evaluated numerically. Many features of our nonlinear theory bear formal resemblance to linear-response theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wu, Chhi‐Chong, and Chau‐Jy Lin. "Free‐carrier absorption of nondegenerate semiconductors in quantizing magnetic fields: Nonpolar optical phonon scattering." Journal of Applied Physics 73, no. 12 (June 15, 1993): 8319–23. http://dx.doi.org/10.1063/1.353423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wingreen, Ned S., Christopher J. Stanton, and John W. Wilkins. "Electron-Electron Scattering in Nondegenerate Semiconductors: Driving the Anisotropic Distribution toward a Displaced Maxwellian." Physical Review Letters 57, no. 8 (August 25, 1986): 1084–87. http://dx.doi.org/10.1103/physrevlett.57.1084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Sato, Hisanao, and Yoshikazu Hori. "Theoretical analysis of plasmon, polar phonon, and hot-electron energy relaxation in nondegenerate semiconductors." Physical Review B 36, no. 11 (October 15, 1987): 6033–39. http://dx.doi.org/10.1103/physrevb.36.6033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Golinelli, Paola, Luca Varani, and Lino Reggiani. "Generalization of Thermal Conductivity and Lorenz Number to Hot-Carrier Conditions in Nondegenerate Semiconductors." Physical Review Letters 77, no. 6 (August 5, 1996): 1115–18. http://dx.doi.org/10.1103/physrevlett.77.1115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Loginov, D. K., and A. D. Chegodaev. "Magnetic-field-induced nonparabolicity of exciton dispersion in semiconductors with a nondegenerate valence band." Journal of Experimental and Theoretical Physics 113, no. 3 (September 2011): 502–9. http://dx.doi.org/10.1134/s1063776111070065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

González, T. "Shot-noise suppression in nondegenerate semiconductors: the role of an energy-dependent scattering time." Physica B: Condensed Matter 272, no. 1-4 (December 1, 1999): 282–84. http://dx.doi.org/10.1016/s0921-4526(99)00287-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wu, Chhi-Chong, Chau-Jy Lin, and Jensan Tsai. "Scattering mechanisms of the Hall effect and transverse magnetoresistance in nondegenerate piezo-electric semiconductors." Semiconductor Science and Technology 3, no. 2 (February 1, 1988): 90–100. http://dx.doi.org/10.1088/0268-1242/3/2/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Moh, K. G., H. S. Min, and Y. J. Park. "Equivalent noise source for Boltzmann transport equation with relaxation‐time approximation in nondegenerate semiconductors." Journal of Applied Physics 74, no. 10 (November 15, 1993): 6217–21. http://dx.doi.org/10.1063/1.355194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kousik, G. S., C. M. van Vliet, G. Bosman, and Horng-Jye Luo. "Quantum 1/f Noise Associated with Intervalley Scattering in Nondegenerate Semiconductors. I. Analytical Calculations." physica status solidi (b) 154, no. 2 (August 1, 1989): 713–26. http://dx.doi.org/10.1002/pssb.2221540230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Poklonski, N. A., S. A. Vyrko, V. I. Yatskevich, and A. A. Kocherzhenko. "A semiclassical approach to Coulomb scattering of conduction electrons on ionized impurities in nondegenerate semiconductors." Journal of Applied Physics 93, no. 12 (June 15, 2003): 9749–52. http://dx.doi.org/10.1063/1.1573735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Min, H. S., and Doyeol Ahn. "Langevin noise sources for the Boltzmann transport equations with the relaxation‐time approximation in nondegenerate semiconductors." Journal of Applied Physics 58, no. 6 (September 15, 1985): 2262–65. http://dx.doi.org/10.1063/1.335943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Loginov, D. K., and A. D. Chegodaev. "Erratum to: “Magnetic-field-induced nonparabolicity of exciton dispersion in semiconductors with a nondegenerate valence band”." Journal of Experimental and Theoretical Physics 120, no. 2 (February 2015): 333–34. http://dx.doi.org/10.1134/s106377611502020x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Pereyra, P. "Spin Polarization Oscillations and Coherence Time in the Random Interaction Approach." Advances in Condensed Matter Physics 2019 (June 2, 2019): 1–10. http://dx.doi.org/10.1155/2019/2030573.

Повний текст джерела
Анотація:
We study the time evolution of the survival probability and the spin polarization of a dissipative nondegenerate two-level system in the presence of a magnetic field in the Faraday configuration. We apply the Extended Gaussian Orthogonal Ensemble approach to model the stochastic system-environment interaction and calculate the survival and spin polarization to first and second order of the interaction picture. We present also the time evolution of the thermal average of these quantities as functions of the temperature, the magnetic field, and the energy-levels density, for ρ(ϵ)∝ϵs, in the subohmic, ohmic, and superohmic dissipation forms. We show that the behavior of the spin polarization calculated here agrees rather well with the time evolution of spin polarization observed and calculated, recently, for the electron-nucleus dynamics of Ga centers in dilute (Ga,N)As semiconductors.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ye, Fan, Rui-Tuo Hong, Yi-Bin Qiu, Yi-Zhu Xie, Dong-Ping Zhang, Ping Fan, and Xing-Min Cai. "Nanocrystalline ZnSnN2 Prepared by Reactive Sputtering, Its Schottky Diodes and Heterojunction Solar Cells." Nanomaterials 13, no. 1 (December 30, 2022): 178. http://dx.doi.org/10.3390/nano13010178.

Повний текст джерела
Анотація:
ZnSnN2 has potential applications in photocatalysis and photovoltaics. However, the difficulty in preparing nondegenerate ZnSnN2 hinders its device application. Here, the preparation of low-electron-density nanocrystalline ZnSnN2 and its device application are demonstrated. Nanocrystalline ZnSnN2 was prepared with reactive sputtering. Nanocrystalline ZnSnN2 with an electron density of approximately 1017 cm−3 can be obtained after annealing at 300 °C. Nanocrystalline ZnSnN2 is found to form Schottky contact with Ag. Both the current I vs. voltage V curves and the capacitance C vs. voltage V curves of these samples follow the related theories of crystalline semiconductors due to the limited long-range order provided by the crystallites with sizes of 2–10 nm. The I−V curves together with the nonlinear C−2−V curves imply that there are interface states at the Ag-nanocrystalline ZnSnN2 interface. The application of nanocrystalline ZnSnN2 to heterojunction solar cells is also demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

YOUNGDALE, E. R., J. R. MEYER, C. A. HOFFMAN, F. J. BARTOLI, and W. I. WANG. "TYPE-II SUPERLATTICES AND VARIABLE OVERLAP SUPERLATTICES IN TOTAL INTERNAL REFLECTION SWITCHES FOR THE LONGWAVE INFRARED." Journal of Nonlinear Optical Physics & Materials 02, no. 03 (July 1993): 415–36. http://dx.doi.org/10.1142/s0218199193000255.

Повний текст джерела
Анотація:
We derive explicit criteria for the properties required of a semiconductor nonlinear medium suitable for use in all-optical switching devices employing total internal reflection. Transmission as a function of laser intensity and film thickness has been calculated using a realistic model for penetration of the evanescent beam under TIR conditions. Requirements based on these results include a large nonlinear refractive index, large index change at saturation and small absorption coefficient. We show that unlike previously-studied semimetals and narrow-gap semiconductors, Type-II superlattices such as InAs-GaSb and variable-overlap superlattices (variants of Type-II which include a spacer between the layer containing the conduction-band minimum and that containing the valence band maximum) such as InAs-AlSb-GaSb hold prospects for satisfying all of these requirements simultaneously. As the free carrier lifetime will have a crucial influence on device performance, we have initiated a systematic experimental study of electron-hole recombination in InAs-based superlattices. From degenerate and nondegenerate four-wave mixing experiments, we have also determined nonlinear optical coefficients as a function of difference frequency and intensity. An InAs-GaSb superlattice has been found to display a refractive index change of ≈ 0.1, as well as device figures of merit which slightly surpasses any previously reported for weakly-saturating nonlinearities at CO 2 wavelengths. It is anticipated that future experiments on Type-II superlattices with longer lifetimes may yield nearly two orders of magnitude additional improvement in the nonlinear refractive index.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lei, X. L., and N. J. M. Horing. "Balance-Equation Approach to Hot-Carrier Transport in Semiconductors." International Journal of Modern Physics B 06, no. 07 (April 10, 1992): 805–936. http://dx.doi.org/10.1142/s0217979292000505.

Повний текст джерела
Анотація:
The balance-equation approach to nonlinear hot-carrier transport theory, formulated by Lei and Ting (1984), is addressed in this comprehensive review. A central feature is the role of strong electron-electron interactions in promoting rapid thermalization about the drifted transport state and the concomitant substantial simplification of the transport theory. This physical feature is embodied in the initial density matrix chosen to represent the unperturbed carrier system. Force and energy balance equations are formulated for the dc steady state, ac dynamic and transient cases of charge conduction, including memory effects. The scattering mechanisms include impurity and phonon interactions along with dynamic nonlocal screening effects due to carrier-carrier interactions. Both linear and nonlinear resistivities are discussed in the degenerate and nondegenerate statistical regimes. Interesting phenomena such as electron cooling and thermal noise and diffusion are discussed as well. Semiconductor microstructure transport is described for both linear and nonlinear hot carrier conduction. In this connection, quasi-2D-systems, heterojunctions, and quantum well superlattices are treated with attention to steady state, transient and high frequency transport, including, for example, superlattice plasmon resonance structure. Type-II superlattice transport is reviewed as well as type-I, and electron-hole drag is treated in conjunction with negative minority electron mobility in a quantum well. Multivalley semiconductors are discussed in some detail. Furthermore, attention is also focused on the center-of-mass velocity fluctuation, Langevin-type equation and thermal noise and diffusion for microstructures and multivalley systems. A number of particularly important phenomena are examined from the balance-equation point of view, such as nonequilibrium phonons, higher order scattering effects and weak localization, hydrodynamic equations for weakly nonuniform systems, and the intracollisional field effect. Alternative formulations and interpretations of the balance-equation approach are reviewed. The distinction between this many-particle, isothermal, balance-equation theory and the noninteracting (single-particle) adiabatic transport theory is discussed to clarify issues subject to controversy in the literature. Finally, we give a brief review of recent developments in the balance-equation approach: investigation of the distribution function in balance-equation theory, improved calculations for GaAs/AlGaAs heterojunctions, extension of the balance equations to an abitrary energy band and recent work on superlattice miniband transport.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Babaev, M. M., T. M. Gassym, M. Tas, and M. Tomak. "Thermomagnetic effects of nondegenerate Kane semiconductors under the conditions of mutual electron–phonon drag in high electric and arbitrary magnetic fields." Journal of Physics: Condensed Matter 17, no. 21 (May 13, 2005): 3255–67. http://dx.doi.org/10.1088/0953-8984/17/21/019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Poklonski, N. A., A. I. Kovalev, N. I. Gorbachuk та S. V. Shpakovski. "CALCULATION OF STATIC PARAMETERS OF SILICON DIODE CONTAINING δ-LAYER OF TRIPLE-CHARGED POINT DEFECTS IN SYMMETRIC p–n-JUNCTION". Devices and Methods of Measurements 9, № 2 (15 червня 2018): 130–41. http://dx.doi.org/10.21122/2220-9506-2018-9-2-130-141.

Повний текст джерела
Анотація:
The study of semiconductor materials and devices containing a narrow layer of impurity atoms and/or intrinsic point defects of the crystal lattice is of fundamental and practical interest. The aim of the study is to calculate the electric parameters of a symmetric silicon diode, in the flat p–n-junction of which a δ-layer of point triple-charged t-defects is formed. Such a diode is called p–t–n-diode, similarly to p–i–n-diode.Each t-defect can be in one of the three charge states (−1, 0, and +1; in the units of the elementary charge). It is assumed that at room temperature all hydrogen-like acceptors in p-region and hydrogen-like donors in n-region are ionized. It was assumed that the cross-section for v-band hole capture on t-defects is greater than the cross-section for c-band electron capture on t-defects.The system of stationary nonlinear differential equations, which describe in the drift-diffusion approximation a migration of electrons and holes in semiconductors, is solved numerically. The static capacityvoltage and current-voltage characteristics of the silicon diode with nondegenerate regions of pand n-type of electrical conductivity are calculated for forward and reverse electric bias voltage.It is shown by calculation that in the p–t–n-diode containing the δ-layer of t-defects, at the forward bias a region of current density stabilization occurs. At the reverse bias the current density in such a diode is much greater than the one in a p–n-diode without t-defects. With the reverse bias the capacitance of the p–t–n-diode, in contrast to the p–n-diode, increases at first and then decreases.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

GUREVICH, YU G., G. N. LOGVINOV, O. YU TITOV, and J. GIRALDO. "NEW PHYSICAL PRINCIPLES OF CONTACT THERMOELECTRIC COOLING." Surface Review and Letters 09, no. 05n06 (October 2002): 1703–8. http://dx.doi.org/10.1142/s0218625x02004256.

Повний текст джерела
Анотація:
We suggest a new approach to theory of contact thermoelectric cooling (Peltier effect). The metal–metal, metal–n-type semiconductor, metal–p-type semiconductor, p–n junction contacts are analyzed. Both degenerate and nondegenerate electron and hole gases are considered. The role of recombination in the contact cooling effect is discussed for the first time.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wei, Tian-Ran, Chao-Feng Wu, Wei Sun, Yu Pan, and Jing-Feng Li. "Is Cu3SbSe3 a promising thermoelectric material?" RSC Advances 5, no. 53 (2015): 42848–54. http://dx.doi.org/10.1039/c5ra03953c.

Повний текст джерела
Анотація:
Cu3SbSe3 characterized by ultralow thermal conductivity is a wide-gap, nondegenerate semiconductor with a large effective mass and deformation potential, yielding zTmax = 0.25.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Mandal, Pravat Kr. "A Note on Nonlinear Parametric Interaction of Acoustic Waves in Magnetised Nondegenerate Piezoelectric Semiconductor — A Numerical Approach." International Journal of Applied Physics and Mathematics 4, no. 6 (2014): 379–85. http://dx.doi.org/10.17706/ijapm.2014.4.6.379-385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

DING, YUJIE J., and JACOB B. KHURGIN. "MIRRORLESS OPTICAL PARAMETRIC OSCILLATORS." Journal of Nonlinear Optical Physics & Materials 05, no. 02 (April 1996): 223–46. http://dx.doi.org/10.1142/s0218863596000179.

Повний текст джерела
Анотація:
We have considered two novel configurations for optical parametric oscillators (OPO’s): transversely-pumped counter-propagating and nondegenerate backward OPO’s due to the distributed feedback provided through the opposite propagation directions of the signal and idler. In both configurations, by changing the incident angle of the pump beam, one can tune the output frequency in a large range. The threshold pump powers for the oscillation can be as low as ~10 W for the transversely-pumped counter-propagating OPO’s and 44 W for the nondegenerate backward OPO’s. The quasi-phase matching is achieved by spatially modulating second-order susceptibility along the growth direction based on semiconductor alternating thin layers or asymmetric quantum-well domain structures or by electric-field poling in conventional second-order nonlinear materials. The nondegenerate backward OPO’s offer the most efficient conversion among all the configurations for the OPO’s having the same threshold pump power. The transversely-pumped counter-propagating OPO’s have the optimal pump power.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tsuchiya, M., J. Shah, T. C. Damen, and J. E. Cunningham. "Nondegenerate four-wave mixing in a semiconductor microcavity." Applied Physics Letters 71, no. 18 (November 3, 1997): 2650–52. http://dx.doi.org/10.1063/1.120168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії