Дисертації з теми "Noncommutative algebras"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Noncommutative algebras".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Rennie, Adam Charles. "Noncommutative spin geometry." Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Повний текст джерелаHartman, Gregory Neil. "Graphs and Noncommutative Koszul Algebras." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27156.
Повний текст джерелаPh. D.
Schoenecker, Kevin J. "An infinite family of anticommutative algebras with a cubic form." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187185559.
Повний текст джерелаRussell, Ewan. "Prime ideals in quantum algebras." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3450.
Повний текст джерелаPhan, Christopher Lee 1980. "Koszul and generalized Koszul properties for noncommutative graded algebras." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10367.
Повний текст джерелаWe investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations. Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality. It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted]. This dissertation contains both previously published and co-authored materials.
Committee in charge: Brad Shelton, Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Christopher Phillips, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Van Kolpin, Outside Member, Economics
Meyer, Jonas R. "Noncommutative Hardy algebras, multipliers, and quotients." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/712.
Повний текст джерелаUhl, Christine. "Quantum Drinfeld Hecke Algebras." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862764/.
Повний текст джерелаZhao, Xiangui. "Groebner-Shirshov bases in some noncommutative algebras." London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.
Повний текст джерелаOblomkov, Alexei. "Double affine Hecke algebras and noncommutative geometry." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31165.
Повний текст джерелаIncludes bibliographical references (p. 93-96).
In the first part we study Double Affine Hecke algebra of type An-1 which is important tool in the theory of orthogonal polynomials. We prove that the spherical subalgebra eH(t, 1)e of the Double Affine Hecke algebra H(t, 1) of type An-1 is an integral Cohen-Macaulay algebra isomorphic to the center Z of H(t, 1), and H(t, 1)e is a Cohen-Macaulay eH(t, 1)e-module with the property H(t, 1) = EndeH(t,tl)(H(t, 1)e). This implies the classification of the finite dimensional representations of the algebras. In the second part we study the algebraic properties of the five-parameter family H(tl, t2, t3, t4; q) of double affine Hecke algebras of type CVC1, which control Askey- Wilson polynomials. We show that if q = 1, then the spectrum of the center of H is an affine cubic surface C, obtained from a projective one by removing a triangle consisting of smooth points. Moreover, any such surface is obtained as the spectrum of the center of H for some values of parameters. We prove that the only fiat de- formations of H come from variations of parameters. This explains from the point of view of noncommutative geometry why one cannot add more parameters into the theory of Askey-Wilson polynomials. We also prove several results on the universality of the five-parameter family H(tl, t2, t3, t4; q) of algebras.
by Alexei Oblomkov.
Ph.D.
Gohm, Rolf. "Noncommutative stationary processes /." Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004103932-d.html.
Повний текст джерелаNordstrom, Hans Erik. "Associated primes over Ore extensions and generalized Weyl algebras /." view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3181118.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaves 48-49). Also available for download via the World Wide Web; free to University of Oregon users.
at, grosse@doppler thp univie ac. "On a Noncommutative Deformation of the Connes--Kreimer Algebra." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1065.ps.
Повний текст джерелаDavies, Andrew Phillip. "Cocycle twists of algebras." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/cocycle-twists-of-algebras(23710bc8-abdf-4b8d-9836-111164fefc11).html.
Повний текст джерелаHwang, Junho. "On the stability and moduli of noncommutative algebras." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57948.
Повний текст джерелаScience, Faculty of
Mathematics, Department of
Graduate
Masmali, Ibtisam Ali. "Hopf algebra and noncommutative differential structures." Thesis, Swansea University, 2010. https://cronfa.swan.ac.uk/Record/cronfa42676.
Повний текст джерелаGriesenauer, Erin. "Algebras of cross sections." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2086.
Повний текст джерелаBrazfield, Christopher Jude. "Artin-Schelter regular algebras of global dimension 4 with two degree one generators /." view abstract or download file of text, 1999. http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaves 103-105). Also available for download via the World Wide Web; free to University of Oregon users. Address: http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.
Brandão, Junior Antonio Pereira. "Polinomios centrais para algebras graduadas." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306381.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisticas e Computação Cientifica
Made available in DSpace on 2018-08-07T02:02:57Z (GMT). No. of bitstreams: 1 BrandaoJunior_AntonioPereira_D.pdf: 1947392 bytes, checksum: a2dae6805cd5224410f82d2eaaa472fc (MD5) Previous issue date: 2006
Resumo: Neste trabalho apresentamos um estudo sobre polinômios centrais graduados e polinômios centrais com involução para algumas álgebras importantes na PI-teoria sobre corpos infinitos. Mais precisamente, descrevemos os polinômios centrais Z2-graduados para as álgebras M2 (K) (matrizes 2 x 2 sobre um corpo K), Ml,l (5), onde 5 é uma álgebra supercomutativa (em particular, obtemos o caso Ml,l(E)), e E 0 E. Para Ml,1(5), apresentamos antes uma classificação em termos de identidades Z2-graduadas. Aqui E é a álgebra de Grassmann de dimensão infinita com unidade e Ml,1(5) é a subálgebra de M2(5), cujos elementos são as matrizes que têm a diagonal principal com elementos de 50, a componente par (central) de 5, e a diagonal secundária com elementos de 51, a componente ímpar (anticomutativa) de 5. Descrevemos também os polinômios centrais graduados para as álgebras Mn(K) (matrizes nxn sobre K), considerando suas graduações naturais pelos grupos cíclicos, e finalménte os polinômios centrais com involução para M2(K), considerando as involuções transposta e simplética
Abstract: In this thesis we study graded central polynomials and central polynomials with involution for some important algebras in the theory of algebras with polynomial identities, over infinite fields. Namely we describe the Z2-graded central polynomials for the algebras M2(K) (the 2 x 2 matrices over the field K), Ml,1(5), where 5 is an arbitrary supercommutative algebra. In particular we obtain the cases Ml,l (E), and furthermore E 0 E. For the case Ml,l (5) we first give a classification in terms of Z2-graded identities. Here E stands for the infinite dimensional Grassmann algebra with 1. AIso Ml,1(5) is the subalgebra of M2(5) with elements the matrices whose main diagonal has entries from 50, the even (central) component of 5, and off-diagonal entries from 51, the odd (anticommutative) component of 5. We also describe the graded central polynomials for the algebras Mn(K), the n x n matrices over K, considering their natural gradings by cyclic groups, and finally the central polynomials with involution for M2 (K), considering the transpose and the symplectic involutions
Doutorado
Algebra
Doutor em Matemática
Goetz, Peter D. "The noncommutative algebraic geometry of quantum projective spaces /." view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3102165.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaves 106-108). Also available for download via the World Wide Web; free to University of Oregon users.
Snyman, Mathys Machiel. "Ergodic properties of noncommutative dynamical systems." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40351.
Повний текст джерелаDissertation (MSc)--University of Pretoria, 2013.
gm2014
Mathematics and Applied Mathematics
unrestricted
Vitoria, Jorge. "Categorical and geometric aspects of noncommutative algebras : mutations, tails and perversities." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/35651/.
Повний текст джерелаSilva, Diogo Diniz Pereira da Silva e. "Algebras graduadas e identidades polinomiais graduadas." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306371.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T17:42:03Z (GMT). No. of bitstreams: 1 Silva_DiogoDinizP_M.pdf: 729460 bytes, checksum: d3bd0f5d35d357ca516d80c06f0ee23f (MD5) Previous issue date: 2007
Resumo: Neste trabalho estudamos algebras graduadas e identidades polinomiais graduadas. Foram abordados dois tipos de problemas: determinar as possíveis graduações de uma determinada algebra; encontrar uma base para as identidades graduadas de uma algebra. Começamos com as definiçõese resultados básicos de álgebras,álgebras graduadas, identidades polinomiais (graduadas), etc. Em seguida fornecemos uma descrição das possíveis graduações da algebra das matrizes n x n sobre um corpo algebricamente fechado, e da algebra das matrizes triangulares superiores quando o corpo é algebricamente fechado, de característica 0 e o grupo é abeliano e fnito. Depois estudamos as identidades graduadas da álgebra das matrizes n x n sobre um corpo K e das álgebras M11(E) e E ? E onde E é a álgebra exterior (ou de Grassmann) de dimensão infinita
Abstract: In this work we study graded algebras and graded polynomial identities. We study two types of problems: finding the possible gradings on a given algebra, and finding a basis forthe graded identities of a given algebra. We begin with the basic definitions and results onalgebras, graded algebras, (graded) polynomial identities, etc. We give a description of thepossible gradings on the matrix algebra over an algebraically closed filed, and of the upper triangular matrices when the field is algebraically closed of characteristic 0, and the group is abelian and finite. Then we study the graded identities of the matrix algebra over a field K and of the algebras M11(E) and E ? E where E is the infinite dimensional Grassmann (or exterior) algebra
Mestrado
Matematica
Mestre em Matemática
Alves, Sergio Mota. "PI equivalencia e não equivalencia de algebras." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306373.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisticas e Computação Cientifica
Made available in DSpace on 2018-08-07T19:30:45Z (GMT). No. of bitstreams: 1 Alves_SergioMota_D.pdf: 708263 bytes, checksum: 1d9ec0b24db06ea81853a6e7d6794b18 (MD5) Previous issue date: 2006
Resumo: As álgebras verbalmente primas são bem conhecidas em característica 0, já sobre corpos de característica p > 2 pouco sabemos sobre elas. Nesse trabalho vamos discutir algumas diferenças entre estes dois casos de característica sobre corpos infinitos. Iniciamos mostrando que o Teorema do Produto Tensorial de Kemer e duas de suas conseqüências não podem ser transportados para corpos infinitos de característica positiva p > 2. Em seguida, discutiremos algumas propriedades envolvendo as álgebras Aa;b, a saber, mostraremos que as álgebras Aa;b e Ma+b(E) não são PI-equivalentes e que as álgebras Aa;a e Ma;a (E) não são PI-equivalentes, e apresentaremos um resultado que enfatiza a importância dos monômios na determinação do ideal das identidades das álgebras Zn £ Z2-graduadas Aa;b em característica positiva. Por ¯m, apresentaremos modelos genéricos e calcularemos a dimensão de Gelfand-Kirillov para as álgebras relativamente livres de posto m nas variedades determinadas pelas álgebras E E, Aa;b e Ma;a(E) E. Como conseqüência, obteremos a prova da não PI- equivalência entre álgebras importantes para PI-teoria em característica positiva
Abstract: The verbally prime algebras are well understood in characteristic 0 while over a field of characteristic p > 2 little is known about them. In this work we discuss some sharp di®erences between these two cases for the characteristic. First we show that the so-called Kemer's Tensor Product Theorem and two of its consequences cannot be extended for infnite fields of positive characteristic p > 2. Afterwards we prove that the algebras Aa;b and Ma+b(E) are not PI equivalent, while the algebras Aa;a and Ma;a(E) E are PI equivalent. Moreover we obtain a result showing the importance of the monomials in the Zn £ Z2-graded T-ideal of the algebra Aa;b. Finally, we exhibit constructions of generic models. By using these models we compute the Gelfand-Kirillov dimension of the relatively free algebras of rank m in the varieties generated by E E, Aa;b, and Ma;a(E)E. As consequence we obtain the PI non equivalence of important algebras for the PI theory in positive characteristic
Doutorado
Algebra
Doutor em Matemática
Kerr, David. "Pressure for automorphisms of exact C*-algebras and a noncommutative variational principle." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63696.pdf.
Повний текст джерелаTiwari, Sharwan Kumar [Verfasser]. "Algorithms in Noncommutative Algebras: Gröbner Bases and Hilbert Series / Sharwan Kumar Tiwari." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149579307/34.
Повний текст джерелаFidelis, Marcello. "Identidades polinomiais em algebras T-primas." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306378.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-14T13:33:07Z (GMT). No. of bitstreams: 1 Fidelis_Marcello_D.pdf: 592299 bytes, checksum: dea5983279c32bbe6e1ffd7e1372fcf4 (MD5) Previous issue date: 2005
Resumo: Neste trabalho estudamos os produtos tensoriais de T-ideais T-primos sobre corpos infinitos. O comportamento destes produtos tensoriais sobre corpos de caracteristica zero foi descrito por Kemer. Primeiramente mostramos, usando os m'etodos introduzidos por Regev, que tal descri¸cao vale se nos restringirmos apenas aos polinomios multilineares. Num segundo momento, aplicando identidades graduadas, mostramos que o Teorema sobre o Produto Tensorial 'e falso para os T-ideais das 'algebras M1,1(E) e E E, onde E 'e a 'algebra de Grassmann com dimensao infinita; M1,1(E) consiste das matrizes 2 × 2 sobre E tendo somente elementos pares (i.e. centrais) de E na diagonal principal, e a outra diagonal consistindo de elementos 'impares (anticomutitativos) de E. Entao voltamos nossa atencao para outros produtos tensoriais e estudamos suas respectivas identidades graduadas. Obtivemos novas demonstracoes de alguns dos casos do Teorema sobre o Produto Tensorial de Kemer. Note que estas demonstracoes nao dependem da teoria sobre a estrutura dos T-ideais, mas sao "elementares". Finalmente, usando outra vez identidades polinomiais graduadas, mostramos que o Teorema sobre o Produto Tensorial nao 'e valido em mais um caso: quando o corpo base possui caracteristica positiva. Isto vem para mostrar novamente que a teoria sobre a estrutura dos T-ideais e, essencialmente, uma teoria sobre identidades polinomiais multilineares.
Abstract: In this work we study tensor products of T-prime T-ideals over infinite fields. The behaviour of these tensor products over a field of characteristic zero was described by Kemer. First we show, using methods due to Regev, that such a description holds if one restricts oneself to multilinear polynomials only. Second, applying graded polynomial identities, we prove that the Tensor Product Theorem fails for the T-ideals of the algebras M1,1(E) and E E where E is the infinite dimensional Grassmann algebra; M1,1(E) consists of the 2×2 matrices over E having even (i.e. central) elements of E in the main diagonal, and the other diagonal consisting of odd (anticommuting) elements of E. Then we pass to other tensor products and study the respective graded identities. We obtain new proofs of some cases of Kemer's Tensor Product Theorem. Note that these proofs do not depend on the structure theory of T-ideals but are "elementary" ones. Finally, using graded polynomial identities once again, we show that the Tensor Product Theorem fails in one more case when the base field is of positive characteristic. All this comes to show once more that the structure theory of T-ideals is essentially about the multilinear polynomial identities
Doutorado
Matematica
Doutor em Matemática
Brandl, Mary-Katherine. "Primitive and Poisson spectra of non-semisimple twists of polynomial algebras /." view abstract or download file of text, 2001. http://wwwlib.umi.com/cr/uoregon/fullcit?p3024507.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaf 49). Also available for download via the World Wide Web; free to University of Oregon users.
Byrnes, Sean. "Some computational and geometric aspects of generalized Weyl algebras /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18765.pdf.
Повний текст джерелаStarling, Charles B. "Actions of Finite Groups on Substitution Tilings and Their Associated C*-algebras." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20663.
Повний текст джерелаMachado, Gustavo Grings. "Álgebras com identidades polinomais e suas dimensões de Gelfand-Kirillow." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306380.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Cientifica
Made available in DSpace on 2018-08-17T15:30:47Z (GMT). No. of bitstreams: 1 Machado_GustavoGrings_M.pdf: 1211967 bytes, checksum: 772eb43184b0ff273c48ec3a47e9ec93 (MD5) Previous issue date: 2011
Resumo: Neste trabalho estudamos álgebras com identidades polinomiais, focando-se no estudo de álgebras associativas unitárias finitamente geradas. Nosso objetivo é fazer uma demonstração alternativa da não PI-equivalência de álgebras utilizando um invariante conhecido como dimensão de Gelfand-Kirillov. Este invariante tem ganhado importância ultimamente, uma vez que ele é relativamente fácil de calcular e, de certa forma, é capaz de diferenciar o modo com que duas álgebras crescem. Começamos com as definições e resultados básicos de álgebras, álgebras graduadas, identidades polinomiais (graduadas), reduções de identidades polinomiais, etc. Em seguida apresentamos alguns resultados de álgebras com identidades polinomiais finitamente geradas, que permitem uma melhor compreensão dos conceitos de altura e de dimensão de Gelfand-Kirillov. Depois estudamos o Teorema do Produto Tensorial de Kemer (TPT), donde se conclui a PI-equivalência (multilinear) envolvendo álgebras importantes na teoria de PI-álgebras, as álgebras T-primas. Em particular, conclui-se a PI-equivalência sobre corpos de característica zero de M1;1(E) e EE, em que E é a álgebra de Grassmann de um espaço vetorial de base enumerável. Enfim, finalizamos mostrando a não PI-equivalência sobre corpos infinitos de característica positiva maior que dois de M1;1(E) e E E, utilizando-se da dimensão de Gelfand-Kirillov
Abstract: In this work we study algebras with polynomial identities, focusing on the study of finitely generated unitary associative algebras. Our goal is to give an alternative proof of non PI-equivalence of algebras using an invariant known as Gelfand-Kirillov dimension. This invariant has gained importance lately since in many cases it is relatively easy to calculate and, surprisingly, it is able to differentiate the growth of two algebras. We begin with definitions and basic results of algebras, graded algebras, (graded) polynomial identities, reduction of polynomial identities, etc. Afterwards we present some results concerning finitely generated algebras with polynomial identities, which give a better comprehension of the notions of height and Gelfand-Kirillov dimension. Later on we study the Kemer's Tensor Product Theorem (TPT), from which we conclude (multilinear) PI-equivalence involving important algebras in PI-theory, the so called T-prime algebras. In particular, we deduce the PI-equivalence of M1;1(E) and E E over fields of characteristic zero, where E is the infinite dimensional Grassman algebra. Finally, we prove the non PI-equivalence of M1;1(E) and E E over infinite fields of prime characteristic greater than two by means of Gelfand-Kirillov dimension
Mestrado
Algebra
Mestre em Matemática
de, Silva Nadish. "Contextuality and noncommutative geometry in quantum mechanics." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:1ca8995d-b562-426a-ab89-afab3a18dda2.
Повний текст джерелаJohnston, Ann. "Markov Bases for Noncommutative Harmonic Analysis of Partially Ranked Data." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/4.
Повний текст джерелаNazaikinskii, Vladimir, Bert-Wolfgang Schulze, and Boris Sternin. "Quantization methods in differential equations : Chapter 3: Applications of noncommutative analysis to operator algebras on singular manifolds." Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2580/.
Повний текст джерелаSilva, Diogo Diniz Pereira da Silva e. "Identidades graduadas em álgebras não-associativas." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306367.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-17T03:42:15Z (GMT). No. of bitstreams: 1 Silva_DiogoDinizPereiradaSilvae_D.pdf: 1168055 bytes, checksum: 49c676076235e3eef6f8a27594f092f7 (MD5) Previous issue date: 2010
Resumo: Neste trabalho apresentamos um estudo sobre identidades polinomiais graduadas em álgebras não associativas. Mais precisamente estudamos as identidades polinomiais graduadas da álgebra de Lie das matrizes de ordem 2 com traço zero com as três graduações naturais, a Z2-graduação, a Z2 _ Z2-graduação e a Z-graduação, neste caso conseguimos uma nova demonstração baseada em métodos elementares dos resultados de [27] que não se baseia em resultados da Teoria de Invariantes, estes resultados foram publicados em [30]. Estudamos também as identidades graduadas da álgebra de Jordan das matrizes simétricas de ordem 2, neste caso obtivemos bases para as identidades graduadas dessa álgebra de Jordan em todas as possíveis graduações, obtivemos também bases para as identidades fracas para os pares (Bn; Jn) e (B; J), onde Bn e B denotam as álgebras de Jordan de uma forma bilinear simétrica não degenerada nos espaços vetoriais Vn e V respectivamente, onde Vn tem dimensão n e V tem dimensão 1, esses resultados estão no artigo [29], aceito para publicação
Abstract: In this thesis we study graded identities in non associative algebras. Namely we study graded polynomial identities for the Lie algebra of the 2_2 matrices with trace zero with it's three natural gradings, the Z2-grading, the Z2_Z2-grading and the Z-grading, in this case we obtained a new proof of the results of [27] that doesn't involve use of Invariant Theory, this results were published in [30]. We also studied the graded identities of the Jordan algebra of the symmetric matrices of order two, we obtained basis for the graded identities of this Jordan algebra in all possible gradings, we also obtained basis for the weak identities of the pairs (Bn; Jn) and (B; J), where Bn and B are the Jordan algebras of a symmetric bilinear form in a the vector spaces Vn and V respectively, where Vn has dimension n and V has countable dimension, this results are in the article [29], accepted for publication
Doutorado
Álgebra Não-Comutativa
Doutor em Matemática
Freitas, Jose Antonio Oliveira de. "Identidades polinomiais graduadas e produto tensorial graduado." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306368.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatística e Computação Científica
Made available in DSpace on 2018-08-14T14:50:24Z (GMT). No. of bitstreams: 1 Freitas_JoseAntonioOliveirade_D.pdf: 1578135 bytes, checksum: a3352669dd5077f0f5949766026e7bb1 (MD5) Previous issue date: 2009
Resumo: Nesta tese estudamos identidades polinomiais graduadas para certas álgebras. Inicialmente, estudamos identidades satisfeitas pelo produto tensorial Z2-graduado. Este estudo foi motivado pelo trabalho de Regev e Seeman com produtos tensoriais Z2-graduados. Eles provaram vários casos nos qual tal produto tensorial é PI equivalente a certas álgebras T-primas. Também conjeturaram que isto sempre ocorre. Trabalhamos com os demais casos e conseguimos provar que tal conjetura e verdadeira. Alêm disso provamos que para certas álgebras, quando consideramos corpos de característica positiva, o produto tensorial graduado ainda se comporta como o não graduado. Consideramos também o produto tensorial-graduado e suas identidades. Provamos que o Teorema A B de Regev continua válido no caso do produto tensorial-graduado quando as álgebras são graduadas por grupos abelianos nitos, e é um bicaracter antissimétrico. Também estudamos a PI equivalência do produto tensorial-graduado de álgebras T-primas. Em seguida estudamos identidades graduadas, descrevemos um conjunto de geradores para as identidades Z-graduadas da álgebra de Lie W1. A álgebra W1 é a álgebra das derivações do anel de polinômios K[t], e é conhecida como a álgebra de Witt. Provamos que se a característica do corpo for 0, então as identidades Z-graduadas de W1 são geradas por um conjunto de identidades de grau 2 e 3. Mais ainda, provamos que não é possível obter um conjunto nito de geradores para as identidades Z-graduadas de W1.
Abstract: In this PhD thesis we study graded polynomial identities for certain types of algebras. First, we study polynomial identities satised by the Z2-graded tensor products. This research was motivated by the paper of Regev and Seeman about the Z2-graded tensor products. They proved that in a series of cases such tensor products are PI equivalent to T-prime algebras. Then they conjectured that this is always the case. We deal here with the remaining cases and thus conrm Regev and Seeman's conjecture. Furthermore, we prove that for some algebras we can remove the restriction on the characteristic of the base eld, and we show that the behaviour of the corresponding graded tensor products is quite similar to that for the usual ungraded tensor products. We consider too the graded tensor products and their identities where is a skew symmetric bicharacter. We show that Regev's A B theorem holds for graded tensor products whenever the gradings are by nite abelian groups. Furthermore we study the PI equivalence of -graded tensor products of T-prime algebras. Afterwards we study the graded identities of the Lie algebra W1. We describe a set of generators of the Z-graded identities of W1. The algebra W1 is the algebra of derivation of the polynomial ring K[t], and it is known as the Witt algebra. We prove that if K is a eld of characteristic 0, then the Z-graded identities of W1 are consequences of a collection of polynomials of degree 2 and 3. Furthermore we prove that the Z-graded identities for W1 do not admit a nite basis.
Doutorado
Algebra
Doutor em Matemática
Resende, Adriana Souza. "Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306698.
Повний текст джерелаDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-15T23:09:32Z (GMT). No. of bitstreams: 1 Resende_AdrianaSouza_M.pdf: 17553204 bytes, checksum: a66cefe30e9957cc4351e03d3aec35b2 (MD5) Previous issue date: 2010
Resumo: O presente trabalho tem a intenção de apresentar por intermédio de uma linguagem unificada alguns conceitos de cálculo vetorial, álgebra linear (matrizes e transformações lineares) e também algumas idéias elementares sobre os grupos de rotações em duas e três dimensões e seus grupos de recobrimento, que geralmente são tratados como "fragmentos" em várias modalidades de cursos no ensino superior. Acreditamos portanto que nosso texto possas ser útil para alunos dos cursos de graduação dos cursos de Engenharia, Física, Matemática e interessados em Matemática em geral. A linguagem unificada à que nos referimos acima é obtida com a introdução do conceitos das álgebras geométricas (ou de Clifford) onde, como veremos, é possível fornecer uma formulação algébrica elegante aos conceitos de vetores, planos e volumes orientados e definir para tais objetos o produto escalar, os produtos contraídos à esquerda e à direita, o produto exterior (associado, como veremos, em casos particulares ao produto vetorial) e finalmente o produto geométrico (Clifford), o que permite o uso desses conceitos para a solução de inúmeros problemas de geometria analítica no R ² e no R ³. Procuramos ilustrar todos estes conceitos com vários exemplos e exercícios com graus variáveis de dificuldades. Nossa apresentação é bem próxima àquela do livro de Lounesto, e de fato muitas seções são traduções (eventualmente seguidas de comentários) de seções daquele livro. Contudo, em muitos lugares, acreditamos que nossa apresentação esclarece e completa as correspondentes do livro de Lounesto
Abstract: This paper aims to present using an unified language a few concepts of vector calculus, linear algebra (matrices and linear transformations) and also some basic ideas about the groups of rotations in two and three dimensions and their covering group, which generally are treated as "fragments" in various types of courses in higher education. We believe therefore that our text should be useful to students of undergraduate courses like Engineering, Physics, Mathematics and people interested in Mathematics in general. The unified language that we refer to above is obtained by introducing the concept of geometric (or Clifford) algebra where, as we shall see, it is possible to give an elegant algebraic formulation to the concepts of vectors, oriented planes and oriented volumes, and to define to those objects the scalar product, the right and left contracted products, the exterior product (associated, as we shall see, in particular cases to the vector product) and finally the geometric (Clifford) product, and moreover, to use those concepts to solve may problems of analytic geometry in R ² and R ³. We illustrated all those concepts with several examples and exercises with variable degrees of difficulties. Our presentation is nearly the one in Lounesto's book, and in fact some sections are no more than translations (eventually with commentaries) from sections of that book. However, in many places, we believe that our presentation clarify nd completement the corresponding ones in Lounesto's book
Mestrado
Ágebra
Mestre em Matemática
Tiger, Norkvist Axel. "Morphisms of real calculi from a geometric and algebraic perspective." Licentiate thesis, Linköpings universitet, Algebra, geometri och diskret matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175740.
Повний текст джерелаIckekommutativ geometri har under de senaste fyra decennierna blivit ett etablerat forskningsområde inom matematiken. Nya idéer och koncept utvecklas i snabb takt, och en viktig fysikalisk tillämpning av teorin är inom kvantteorin. Denna avhandling kommer att fokusera på ett derivationsbaserat tillvägagångssätt inom ickekommutativ geometri där ramverket real calculi används, vilket är ett relativt direkt sätt att studera ämnet på. Eftersom analogin mellan real calculi och klassisk Riemanngeometri är intuitivt klar så är real calculi användbara när man undersöker hur klassiska koncept inom Riemanngeometri kan generaliseras till en ickekommutativ kontext. Denna avhandling ämnar att klargöra vissa algebraiska aspekter av real calculi genom att introducera morfismer för dessa, vilket möjliggör studiet av real calculi på en strukturell nivå. I synnerhet diskuteras real calculi över matrisalgebror från både ett algebraiskt och ett geometriskt perspektiv. Morfismer tolkas även geometriskt, vilket leder till en ickekommutativ teori för inbäddningar. Som ett exempel blir den ickekommutativa torusen minimalt inbäddad i den ickekommutativa 3-sfären.
Zähringer, Yasin Hisam Julian. "Non-commutative Iwasawa theory with (φ,Γ)-local conditions over distribution algebras". Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/noncommutative-iwasawa-theory-with-local-conditions-over-distribution-algebras(77477392-e3b4-4eb1-8acc-e59789517360).html.
Повний текст джерелаMello, Thiago Castilho de 1984. "Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-19T21:39:41Z (GMT). No. of bitstreams: 1 Mello_ThiagoCastilhode_D.pdf: 1364753 bytes, checksum: 66955ce4a4c6b84e5c6dcc1a414f3f24 (MD5) Previous issue date: 2012
Resumo: Nesta tese estudamos a álgebra genérica de M1;1 em dois geradores sobre um corpo infinito de característica diferente de 2. Descrevemos o centro desta álgebra e provamos que este é a soma direta do corpo com um ideal nilpotente da álgebra. Como consequência mostramos que este centro contém elementos não escalares, respondendo a uma pergunta feita por Berele. Em característica zero, estudamos também as identidades polinomiais de tal álgebra genérica e exibimos uma base finita para seu T-ideal, utilizando a descrição do seu centro e os resultados de Popov sobre as identidades de M1;1 em característica zero. Segue que tal base é formada pelos polin^omios [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] e s4, a identidade polinomial standard de grau 4. Por fim, utilizando ideias e resultados de Nikolaev sobre as identidades em duas variáveis de M2(K) em característica zero, mostramos que todas as identidades polinomiais em duas variáveis de M1;1 são consequências das identidades [[x1; x2]2; x1] e [x1; x2]³
Abstract: In this thesis, we study the generic algebra of M1;1 in two generators over an infinite field of characteristic different from 2. We describe the centre of this algebra and prove that this centre is a direct sum of the field and a nilpotent ideal of the algebra. As a consequence, we show that such centre contains nonscalar elements and thus we answer a question posed by Berele. In characteristic zero we also study the identities of this generic algebra and find a finite basis for its ideal of identities using the description of its centre and the results of Popov, about the identities of M1;1 in characteristic zero. It follows that such a basis is formed by the polynomials [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] and by s4, the standard identity of degree four. Finally, using ideas and results of Nikolaev about the identities in two variables of M2(K) in characteristic zero, we show that the polynomial identities in two variables of M1;1 follow from [[x1; x2]2; x1] and [x1; x2]³
Doutorado
Matematica
Doutor em Matemática
Galvão, Lucas. "A dimensão de Gelfand-Kirillov de certas álgebras." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18032015-164005/.
Повний текст джерелаThe Gelfand-Kirillov dimension measures the asymptotic rate of growth of algebras. Since it provides important structural information, this invariant has become one of the standard tools in the study of innite dimensional algebras. In this work we present the basic properties of the Gelfand-Kirillov dimension of algebras and modules, and we also show the calculation of the Gelfand-Kirillov dimension of some algebras and modules, being the most important example the calculation of the Gelfand-Kirillov dimension of the Weyl algebra An.
Yasumura, Felipe Yukihide 1991. "Identidades polinomiais em álgebras de matrizes." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306360.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação
Made available in DSpace on 2018-08-24T08:22:37Z (GMT). No. of bitstreams: 1 Yasumura_FelipeYukihide_M.pdf: 1764013 bytes, checksum: e6eeb3b9e9fd697e59dce7509c017213 (MD5) Previous issue date: 2014
Resumo: Nesta dissertação, será apresentada noções básicas da teoria de álgebras com identidades polinomiais (denominados de PI-álgebras), e, seguindo o trabalho de Razmyslov, provaremos a propriedade de Specht para a álgebra de Lie de matrizes 2x2 de traço zero; e acharemos uma base minimal de identidades da álgebra associativa de matrizes 2x2, baseado nos trabalhos de Drensky. Para esses objetivos, serão desenvolvidas noções da linguagem e teoria de álgebra não-comutativa clássica; serão desenvolvidas técnicas em representações do grupo simétrico e geral linear; e será abordada noções básicas de matrizes genéricas. Na demonstração da propriedade de Specht para a álgebra de Lie de matrizes 2x2 de traço zero, utilizaremos uma ténica desenvolvida por Razmyslov (identidades fracas), e utilizaremos teoria de estrutura de PI-álgebras (teoria de álgebra não comutativa aplicada em PI-álgebras - a maioria dos resultados apresentados sobre este assunto são devido a Amitsur). Determinar uma base minimal de identidades para a álgebra de matrizes 2x2 utilizará fortemente a teoria de representações, e os resultados apresentados neste trabalho foram desenvolvidos principalmente por Drensky. Na medida do possível, toda a linguagem e resultados necessários para a apresentação e demonstração dos teoremas principais serão apresentados neste trabalho, e espero que um leitor deste trabalho possa ter noções de alguns tópicos de álgebra não comutativa, noções da teoria básica de PI-álgebras e noções da importância e simplificação de contas das técnicas de representações e matrizes genéricas
Abstract: In this dissertation, will be presented basic notions of the theory of algebras with polynomial identity (named PI-algebras), and, following the works of Razmyslov, we'll prove the Specht property for the Lie algebra of matrices 2x2 with nulltrace; and we'll find a minimal basis of identities of the matrix algebra 2x2, based in the works of Dresnky. For these objectives, we'll develop basic notions of language and theory of classic non-commutative algebra; we'll develop techniques in representations of symmetric group and general linear group; and we'll approach basic notions of generic matrices. In the proof of Specht property for the Lie algebra of 2x2 matrices with nulltrace, we'll use a technique developed by Razmyslov (weak identities), and we'll use theory of structure of PI-algebras (theory of non-commutative algebras applied on PI-algebras - the most results in this subject are due to Amitsur). Determining a minimal basis of identities of the matrix algebra 2x2 will use strongly the representation theory, and the results was obtained mainly by Drensky. We'll try to exhibit all the necessary language and results for the presentation of the main theorems' proofs in this work, and we expect that a reader of this work can has notions of some topics on non-commutative algebra, notions of basic theory of PI-algebras and notions of the importance and simplification of the techniques with representations and generic matrices
Mestrado
Matematica
Mestre em Matemática
Zucca, Alessandro. "Dirac Operators on Quantum Principal G-Bundles." Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4108.
Повний текст джерелаAndres, Wolf Daniel [Verfasser]. "Noncommutative computer algebra with applications in algebraic analysis / Wolf Daniel Andres." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1049821475/34.
Повний текст джерелаKronewitter, Frank Dell. "Noncommutative computer algebra in linear algebra and control theory /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9963663.
Повний текст джерелаMachado, Ulisses Diego Almeida Santos. "Relações de dispersão deformadas na cosmologia inflacionária." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/14/14131/tde-26062013-172342/.
Повний текст джерелаDispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
Dias, David Pires. "O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082008-164858/.
Повний текст джерелаGiven a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
Struble, Craig Andrew. "Analysis and Implementation of Algorithms for Noncommutative Algebra." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27393.
Повний текст джерелаPh. D.
Sasai, Yuya. "Noncommutative Field Theories and Hopf Algebraic Symmetries." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124412.
Повний текст джерелаHolm, Christoffer. "A Noncommutative Catenoid." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139794.
Повний текст джерелаCrawford, Simon Philip. "Singularities of noncommutative surfaces." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31543.
Повний текст джерела