Добірка наукової літератури з теми "Noncanonical hypercomplex number system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Noncanonical hypercomplex number system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Noncanonical hypercomplex number system"

1

Pulver, Sandra. "Quaternions: The hypercomplex number system." Mathematical Gazette 92, no. 525 (November 2008): 431–36. http://dx.doi.org/10.1017/s0025557200183639.

Повний текст джерела
Анотація:
Are there solutions of the equation x2 + 1 = 0 ? Carl Fredrich Gauss (1777–1855) conjectured that there was a solution and that it was the square root of - 1 . But since the squares of all real numbers, positive or negative, are positive, Gauss introduced a fanciful idea. His solution to this equation was , which he named i. He integrated i with the real numbers to form a set known as , the complex numbers, where each element in that set was of the form a + bi, where a, . Gauss illustrated this on a graph, the horizontal axis became the real axis and represented the real coefficient, while the vertical axis became the imaginary axis and represented the imaginary coefficient.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

KIM, JI EUN, and KWANG HO SHON. "COSET OF A HYPERCOMPLEX NUMBER SYSTEM IN CLIFFORD ANALYSIS." Bulletin of the Korean Mathematical Society 52, no. 5 (September 30, 2015): 1721–28. http://dx.doi.org/10.4134/bkms.2015.52.5.1721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

SHU, JIAN-JUN, and YAJING LI. "HYPERCOMPLEX CROSS-CORRELATION OF DNA SEQUENCES." Journal of Biological Systems 18, no. 04 (December 2010): 711–25. http://dx.doi.org/10.1142/s0218339010003470.

Повний текст джерела
Анотація:
A hypercomplex representation of DNA is proposed to facilitate comparing DNA sequences with fuzzy composition. With the hypercomplex number representation, the conventional sequence analysis method, such as, dot matrix analysis, dynamic programming, and cross-correlation method have been extended and improved to align DNA sequences with fuzzy composition. The hypercomplex dot matrix analysis can provide more control over the degree of alignment desired. A new scoring system has been proposed to accommodate the hypercomplex number representation of DNA and integrated with dynamic programming alignment method. By using hypercomplex cross-correlation, the match and mismatch alignment information between two aligned DNA sequences are separately stored in the resultant real part and imaginary parts respectively. The mismatch alignment information is very useful to refine consensus sequence based motif scanning.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SUNDHEIM, PAUL. "A MULTIPLICATIVE DETERMINANT FOR 2m-DIMENSIONAL MATRICES." Journal of Algebra and Its Applications 13, no. 01 (August 20, 2013): 1350067. http://dx.doi.org/10.1142/s0219498813500679.

Повний текст джерела
Анотація:
A multiplication for a specific nested collection of multidimensional matrices is defined by association with a system of n = 2m-dimensional hypercomplex numbers. A totally symmetric and multiplicative determinant is then derived from the system which extends the Cayley hyperdeterminant to these higher dimensions. The determinant is related to the zero divisors of the system of hypercomplex numbers. Properties of the determinant are then discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Кalinovskiy, Ya А., and Yu E. Boiarinova. "Method for Representing an Exponent in a Fifth-dimensional Hypercomplex Number Systems Using a Hypercomplex Computing Software." Èlektronnoe modelirovanie 43, no. 6 (December 6, 2021): 3–18. http://dx.doi.org/10.15407/emodel.43.06.003.

Повний текст джерела
Анотація:
The structure of method for constructing a representation of an exponential function in hypercomplex number systems (HNS) by the method of solving an associated system of linear differential equations is considered. Brief information about the hypercomplex computing software (HCS) is given. With the use of HCS, the necessary cumbersome operations on symbolic expressions were performed when constructing the representation of the exponent in the fifthdimensional HNS. Fragments of programs in the environment of HCS and results of symbolic calculations are resulted.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BERKOVICH, Y., and A. SHENKMAN. "HYPERNION NUMBERS AND THEIR USE IN THE ANALYSIS OF NETWORKS DRIVEN BY NONSINUSOIDAL SOURCES." Journal of Circuits, Systems and Computers 13, no. 01 (February 2004): 65–76. http://dx.doi.org/10.1142/s0218126604001192.

Повний текст джерела
Анотація:
A method of using hypercomplex numbers for the analysis of linear electric circuits with nonsinusoidal voltages and currents has been proposed. Similar to the complex number method for circuits with sinusoidal voltages and currents, the proposed method reduces the analysis of nonsinusoidal circuits to the analysis of direct-current circuits. A special system of hypercomplex numbers, called hypernions, has been created in order to obtain a new efficient method for analyzing nonsinusoidal networks. This system is interesting in that it expands the concept of numbers and attaches meaning to equations and transformations involving discontinuous functions and makes it possible to describe various non-Euclidean spaces. It is shown that the proposed method of analysis of linear nonsinusoidal electric networks makes it possible to carry out numerical calculations for complex circuits by using standard software.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hauser, Jochem, and Walter Dröscher. "Gravity beyond Einstein? Part III: numbers and coupling constants, contradictory experiments, hypercomplex gravity like-fields, propellantless space propulsion." Zeitschrift für Naturforschung A 77, no. 1 (November 4, 2021): 13–86. http://dx.doi.org/10.1515/zna-2021-0147.

Повний текст джерела
Анотація:
Abstract This article, the last in a series of three articles, attempts to unravel the underlying physics of recent experiments regarding the contradictory properties of the neutron lifetime that has been a complete riddle for quite some time. So far, none of the advanced theories beyond the Standard Models (SMs) of particle physics and cosmology have shown sufficient potential to resolve this mystery. We also try to explain the blatant contradiction between the predictions of particle physics and experiments concerning the nature and properties of the (so far undetected) dark matter and dark energy particles. To this end the novel concepts of both negative and hypercomplex matter (giving rise to the concept of matter flavor) are introduced, replacing the field of real numbers by hypercomplex numbers. This extension of the number system in physics leads to both novel internal symmetries requiring new elementary particles – as outlined in Part I and II, and to novel types of matter. Hypercomplex numbers are employed in place of the widely accepted (but never observed) concept of extra space dimensions – and, hence, also to question the corresponding concept of supersymmetry. To corroborate this claim, we report on the latest experimental searches for novel and supersymmetric elementary particles by direct searches at the Large Hadron Collider (LHC) and other colliders as well as numerous other dedicated experiments that all have come up empty handed. The same holds true for the dark matter search at European Council for Nuclear Research (CERN) [CERN Courier Team, “Funky physics at KIT,” in CERN Courier, 2020, p. 11]. In addition, new experiments looking for dark or hidden photons (e.g., FUNK at Karlsruhe Institute of Technology, CAST at CERN, and ALPS at Desy, Hamburg) are discussed that all produced negative results for the existence of the hitherto unseen but nevertheless gravitationally noticeably dark matter. In view of this contradicting outcome, we suggest a four-dimensional Minkowski spacetime, assumed to be a quasi de Sitter space, dS 1,3, complemented by a dual spacetime, denoted by DdS 1,3, in which the dark matter particles that are supposed to be of negative mass reside. This space is endowed with an imaginary time coordinate, −it and an imaginary speed of light, ic. This means that time is considered a complex quantity, but energy m(ic)2 > 0. With this construction visible and dark matter both represent positive energies, and hence gravitation makes no distinction between these two types of matter. As dark matter is supposed to reside in dual space DdS 1,3, it is principally undetectable in our spacetime. That this is evident has been confirmed by numerous astrophysical observations. As the concept of matter flavor may possibly resolve the contradictory experimental results concerning the lifetime of the neutron [J. T. Wilson, “Space based measurement of the neutron lifetime using data from the neutron spectrometer on NASA’s messenger mission,” Phys. Rev. Res., vol. 2, p. 023216, 2020] this fact could be considered as a first experimental hint for the actual existence of hypercomplex matter. In canonical gravity the conversion of electromagnetic into gravity-like fields (as surmised by Faraday and Einstein) should be possible, but not in cosmological gravity (hence these attempts did not succeed), and thus these conversion fields are outside general relativity. In addition, the concept of hypercomplex mass in conjunction with magnetic monopoles emerging from spin ice materials is discussed that may provide the enabling technology for long sought propellantless space propulsion.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Et. al., Dr Indrajit Patra ,. "Shifts in the Foundation: The Continual Modification and Generalization of Axioms and the Search for the Mathematical Principles that Underlie our Reality." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 11, 2021): 1095–106. http://dx.doi.org/10.17762/turcomat.v12i2.1126.

Повний текст джерела
Анотація:
The study shall seek to explore the deep, underlying correspondence between the mathematical world of pure numbers and our physical reality. The study begins by pointing out that while the familiar, one-dimensional real numbers quantify many aspects of our day-to-day reality, complex numbers provide the mathematical foundations of quantum mechanics and also describe the behavior of more complicated quantum networks and multi-party correlations, and quaternions underlie Einsteinian special theory of relativity, and then poses the question whether the octonions could play a similar role in constructing a grander theory of our universe. The study then points out that by increasing the level of abstraction and generalization of axiomatic assumptions, we could construct a more powerful number system based on octonions, the seditions, or even other hypercomplex numbers so that we may more accurately describe the universe in its totality.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cerpa, Waldo, Elena Latorre-Esteves, and Andres Barria. "RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission." Proceedings of the National Academy of Sciences 112, no. 15 (March 30, 2015): 4797–802. http://dx.doi.org/10.1073/pnas.1417053112.

Повний текст джерела
Анотація:
Wnt signaling has a well-established role as a regulator of nervous system development, but its role in the maintenance and regulation of established synapses in the mature brain remains poorly understood. At excitatory glutamatergic synapses, NMDA receptors (NMDARs) have a fundamental role in synaptogenesis, synaptic plasticity, and learning and memory; however, it is not known what controls their number and subunit composition. Here we show that the receptor tyrosine kinase-like orphan receptor 2 (RoR2) functions as a Wnt receptor required to maintain basal NMDAR-mediated synaptic transmission. In addition, RoR2 activation by a noncanonical Wnt ligand activates PKC and JNK and acutely enhances NMDAR synaptic responses. Regulation of a key component of glutamatergic synapses through RoR2 provides a mechanism for Wnt signaling to modulate synaptic transmission, synaptic plasticity, and brain function acutely beyond embryonic development.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ibrayev, А. Т. "METHOD FOR CONSTRUCTING THE COMMUTATIVE ALGEBRA OF QUATERNION AND OCTONION." PHYSICO-MATHEMATICAL SERIES 6, no. 334 (December 15, 2020): 5–12. http://dx.doi.org/10.32014/2020.2518-1726.91.

Повний текст джерела
Анотація:
In this paper, we solve the problem of constructing a commutative algebra of quaternions and octonions. A proof of the theorem is given that the commutativity of quaternions can be ensured by specifying a set of sign coefficients of the directions of reference of the angles between the radius vectors in the coordinate planes of the vector part of the coordinate system of the quaternion space. The method proposed in the development of quaternions possessing the commutative properties of multiplication is used further to construct a commutative octonion algebra. The results obtained on improving the algebra of quaternions and octonions can be used in the development of new hypercomplex numbers with division over the field of real numbers, and can also find application for solving a number of scientific and technical problems in the areas of field theory, physical electronics, robotics, and digital processing of multidimensional signals.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Noncanonical hypercomplex number system"

1

Хіцко, Яна Володимирівна. "Математичне моделювання задач криптографії та обробки сигналів з використанням неканонічних гіперкомплексних числових систем". Thesis, НТУУ "КПІ", 2016. https://ela.kpi.ua/handle/123456789/15092.

Повний текст джерела
Анотація:
Дисертація присвячена математичному моделюванню задач криптографії та обробки сигналів з використанням неканонічних гіперкомплексних числових систем, застосування яких зменшує кількість обчислень при функціонуванні таких моделей та дозволяє оптимізувати їх за окремими характеристиками. Результати моделювання задачі розділення секрету показали, що застосування неканонічних гіперкомплексних числових систем, починаючи з вимірності 4, зменшує кількість потрібних обчислень у порівнянні із застосуванням канонічних гіперкомплексних числових систем. Розроблено методи побудови структур неканонічних гіперкомплексних числових систем, що задовольняють критеріям побудови цифрового фільтра. Побудовано цифровий фільтр з коефіцієнтами у неканонічних гіперкомплексних числових системах та проведена його оптимізація за параметричною чутливістю.
The thesis is devoted to mathematical modeling of cryptography and signal problems using non-canonical hypercomplex numerical systems, which reduces the calculations amount during these models functioning and allows their optimization by individual characteristics. The modelling results of secret sharing scheme have shown that the use of non-canonical hypercomplex numerical systems starting from dimension 4 reduces the computation amount required in comparison with the use of canonical hypercomplex numerical systems. The methods for synthesis the noncanonical hypercomplex numerical system structures that satisfy the criteria for building a digital filter are developed. The digital filter is developed with the coefficients in noncanonical hypercomplex numerical systems and optimized by the parametric sensitivity.
Диссертация посвящена математическому моделированию задач криптографии и обработки сигналов с использованием неканонических гиперкомплексных числовых систем (ГЧС). Разработаны методы и способы представления и обработки данных в неканонических ГЧС, применение которых упрощает вид математических моделей, уменьшает количество вычислений при их функционировании и позволяет производить их оптимизацию по отдельным признакам. Анализ результатов работ последнего десятилетия по применению гиперкомплексных числовых систем в решении задач криптографии и обработки сигналов показал следущее: 1) применение канонических ГЧС к задаче разделения секрета повышает криптографическую стойкость, но вместе с тем увеличивает количество операций, требуемых для реализации такой задачи. Применение неканонических ГЧС дает возможность минимизировать количество вычислений за счет меньшей размерности системы; 2) синтез цифрового фильтра с использованием канонических ГЧС дает результаты по оптимизации его параметрической чувствительности, но поскольку выбор таких систем ограничен, неканонические ГЧС дают большие возможности по оптимизации чувствительности. В работе совершенствуются методы построения структур ГЧС заданной размерности, в том числе получения множества структур неканонических ГЧС, заданных в общем виде и неканонических гиперкомплексных числовых систем, изоморфных диагональной системе. Эти методы учитывают заданные ограничения представления данных в неканонических ГЧС для моделирования практических задач. Предлагается метод построения некоторых классов изоморфизма для неканонических ГЧС размерности 2. Изоморфные системы используются для минимизации вычислений при таком представления данных. В работе совершенствуются методы определения единичного элемента, нормы, сопряжения и делителей нуля для неканонических гиперкомплексных числовых систем; методы выполнения операций в таких системах. Впервые предлагается метод вычисления вычетов в неканонических ГЧС, который применяется в моделировании задачи разделения секрета и учитывает структурные особенности неканонических гиперкомплексных числовых систем. Предлагается модификация модулярной схемы разделения секрета, которая отличается от существующей представлением информации остатками в неканонических ГЧС по совокупности неканонических гиперкомплексных модулей. Реализована компьютерная модель задачи разделения секрета для неканонических ГЧС третьей и четвертой размерности в системе символьных вычислений MAPLE. Приведены результаты работы такой модели и сравнительные характеристики количества операций в части преобразования данных, непосредственно разделения секрета и восстановления данных. Анализ полученных результатов показал, что в целом, применение неканонических ГЧС к данной модели позволяет использовать меньшую размерность в зависимости от выбора констант при структурных единицах в таблице умножения системы, для обеспечения такой же криптостойкости, как и с использованием канонических ГЧС. Использование неканонической ГЧС размерности 3 для обеспечения такой же криптостойкости, как и при использовании канонической ГЧС размерности 4, не дает нужного эффекта для уменьшения количества вычислений, так как среднее количество операций увеличивается на 92%. Но уже при использовании неканонической ГЧС размерности 4 с 9-ю составными ячейками в таблице умножения с целыми коэффициентами из диапазона {-4,4}, для обеспечения такой же криптостойкости, как и при использовании канонической ГЧС размерности 6, количество требуемых вычислений уменьшается в среднем на 44%. Для успешного восстановления секрета, необходимо использовать числовые системы без делителей нуля и обладающих свойством мультипликативности нормы. В диссертационной работе впервые предлагается метод синтеза неканонических ГЧС, которые могут быть использованы при построении цифрового фильтра. Создана математическая модель рекурсивного цифрового фильтра с гиперкомплексными коэффициентами в полученных неканонических ГЧС третьей размерности. Впервые предлагается метод оптимизации суммарной параметрической чувствительности фильтра, построенного с использованием неканонических ГЧС который позволяет существенно уменьшить параметрическую чувствительность эквивалентного фильтра с вещественными коэффициентами (до ~50%) и существующих фильтров с гиперкомплексными коэффициентами (до ~40%). В работе описано расширение аналитически-программного инструментария в системе символьных вычислений MAPLE, который реализует предложенные модели и методы с учетом структурных особенностей неканонических ГЧС, а именно: определение основных свойств и выполнение операций над неканоническими гиперкомплексными числами; выполнение модулярных операций над неканоническими гиперкомплексными числами; построение структур неканонических ГЧС согласно заданным критериям, в том числе, критерию построения цифрового фильтра; реализация модели задачи разделения секрета в неканонических ГЧС и метода оптимизации параметрической чувствительности цифрового фильтра. Листинги кода приведены в приложениях.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії