Добірка наукової літератури з теми "Non-reversible Markov chain"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Non-reversible Markov chain".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Non-reversible Markov chain"
Choi, Michael C. H., and Pierre Patie. "Analysis of non-reversible Markov chains via similarity orbits." Combinatorics, Probability and Computing 29, no. 4 (February 18, 2020): 508–36. http://dx.doi.org/10.1017/s0963548320000024.
Повний текст джерелаQin, Liang, Philipp Höllmer, and Werner Krauth. "Direction-sweep Markov chains." Journal of Physics A: Mathematical and Theoretical 55, no. 10 (February 16, 2022): 105003. http://dx.doi.org/10.1088/1751-8121/ac508a.
Повний текст джерелаHöllmer, Philipp, A. C. Maggs, and Werner Krauth. "Hard-disk dipoles and non-reversible Markov chains." Journal of Chemical Physics 156, no. 8 (February 28, 2022): 084108. http://dx.doi.org/10.1063/5.0080101.
Повний текст джерелаDobson, P., I. Fursov, G. Lord, and M. Ottobre. "Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems." Computational Geosciences 24, no. 3 (March 13, 2020): 1301–13. http://dx.doi.org/10.1007/s10596-020-09947-4.
Повний текст джерелаVialaret, Marie, and Florian Maire. "On the Convergence Time of Some Non-Reversible Markov Chain Monte Carlo Methods." Methodology and Computing in Applied Probability 22, no. 3 (February 15, 2020): 1349–87. http://dx.doi.org/10.1007/s11009-019-09766-w.
Повний текст джерелаYang, Shangze, Di Xiao, Xuesong Li, and Zhen Ma. "Markov Chain Investigation of Discretization Schemes and Computational Cost Reduction in Modeling Photon Multiple Scattering." Applied Sciences 8, no. 11 (November 19, 2018): 2288. http://dx.doi.org/10.3390/app8112288.
Повний текст джерелаKijima, Masaaki. "On passage and conditional passage times for Markov chains in continuous time." Journal of Applied Probability 25, no. 2 (June 1988): 279–90. http://dx.doi.org/10.2307/3214436.
Повний текст джерелаKijima, Masaaki. "On passage and conditional passage times for Markov chains in continuous time." Journal of Applied Probability 25, no. 02 (June 1988): 279–90. http://dx.doi.org/10.1017/s0021900200040924.
Повний текст джерелаVermolen, Fred, and Ilkka Pölönen. "Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer." Journal of Mathematical Biology 80, no. 3 (December 19, 2019): 545–73. http://dx.doi.org/10.1007/s00285-019-01367-y.
Повний текст джерелаTran, Ha, and Kourosh Khoshelham. "Procedural Reconstruction of 3D Indoor Models from Lidar Data Using Reversible Jump Markov Chain Monte Carlo." Remote Sensing 12, no. 5 (March 5, 2020): 838. http://dx.doi.org/10.3390/rs12050838.
Повний текст джерелаДисертації з теми "Non-reversible Markov chain"
Xu, Jason Qian. "Markov Chain Monte Carlo and Non-Reversible Methods." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/244823.
Повний текст джерелаEnfroy, Aurélien. "Contributions à la conception, l'étude et la mise en œuvre de méthodes de Monte Carlo par chaîne de Markov appliquées à l'inférence bayésienne." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAS012.
Повний текст джерелаThis thesis focuses on the analysis and design of Markov chain Monte Carlo (MCMC) methods used in high-dimensional sampling. It consists of three parts.The first part introduces a new class of Markov chains and MCMC methods. These methods allow to improve MCMC methods by using samples targeting a restriction of the original target distribution on a domain chosen by the user. This procedure gives rise to a new chain that takes advantage of the convergence properties of the two underlying processes. In addition to showing that this chain always targets the original target measure, we also establish ergodicity properties under weak assumptions on the Markov kernels involved.The second part of this thesis focuses on discretizations of the underdamped Langevin diffusion. As this diffusion cannot be computed explicitly in general, it is classical to consider discretizations. This thesis establishes for a large class of discretizations a condition of uniform minimization in the time step. With additional assumptions on the potential, it shows that these discretizations converge geometrically to their unique V-invariant probability measure.The last part studies the unadjusted Langevin algorithm in the case where the gradient of the potential is known to within a uniformly bounded error. This part provides bounds in V-norm and in Wasserstein distance between the iterations of the algorithm with the exact gradient and the one with the approximated gradient. To do this, an auxiliary Markov chain is introduced that bounds the difference. It is established that this auxiliary chain converges in distribution to sticky process already studied in the literature for the continuous version of this problem
Huguet, Guillaume. "Étude d’algorithmes de simulation par chaînes de Markov non réversibles." Thesis, 2020. http://hdl.handle.net/1866/24345.
Повний текст джерелаMarkov chain Monte Carlo (MCMC) methods commonly use chains that respect the detailed balance condition. These chains are called reversible. Most of the theory developed for MCMC evolves around those particular chains. Peskun (1973) and Tierney (1998) provided useful theorems on the ordering of the asymptotic variances for two estimators produced by two different reversible chains. In this thesis, we are interested in non-reversible chains, which are chains that don’t respect the detailed balance condition. We present algorithms that simulate non-reversible chains, mainly the Guided Random Walk (GRW) by Gustafson (1998) and the Discrete Bouncy Particle Sampler (DBPS) by Sherlock and Thiery (2017). For both algorithms, we compare the asymptotic variance of estimators with the ones produced by the Metropolis- Hastings algorithm. We present a recent theoretical framework introduced by Andrieu and Livingstone (2019) and their analysis of the GRW. We then show that the DBPS is part of this framework and present an analysis on the asymptotic variance of estimators. Their main theorem can provide an ordering of the asymptotic variances of two estimators resulting from nonreversible chains. We show that an estimator could have a lower asymptotic variance by adding propositions to the DBPS. We then present empirical results of a modified DBPS. Through the thesis we will mostly be interested in chains that are produced by deterministic proposals. We show a general construction of the delayed rejection algorithm using deterministic proposals and one possible equivalent for non-reversible chains.
Книги з теми "Non-reversible Markov chain"
Cheng, Russell. Finite Mixture Models. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0017.
Повний текст джерелаCheng, Russell. Finite Mixture Examples; MAPIS Details. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0018.
Повний текст джерелаЧастини книг з теми "Non-reversible Markov chain"
Fulman, Jason. "Stein’s method and non-reversible Markov chains." In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 66–74. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2004. http://dx.doi.org/10.1214/lnms/1196283800.
Повний текст джерелаТези доповідей конференцій з теми "Non-reversible Markov chain"
Gao, Chenjun, Jingjing He, and Xuefei Guan. "A Novel Probability of Detection Assessment Considering Model Uncertainty for Lamb Wave Detection." In 2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/qnde2021-74014.
Повний текст джерела