Добірка наукової літератури з теми "Non-polar III-Nitrides"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Non-polar III-Nitrides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Non-polar III-Nitrides"

1

Lorenz, Katharina. "Ion Implantation into Nonconventional GaN Structures." Physics 4, no. 2 (May 16, 2022): 548–64. http://dx.doi.org/10.3390/physics4020036.

Повний текст джерела
Анотація:
Despite more than two decades of intensive research, ion implantation in group III nitrides is still not established as a routine technique for doping and device processing. The main challenges to overcome are the complex defect accumulation processes, as well as the high post-implant annealing temperatures necessary for efficient dopant activation. This review summarises the contents of a plenary talk, given at the Applied Nuclear Physics Conference, Prague, 2021, and focuses on recent results, obtained at Instituto Superior Técnico (Lisbon, Portugal), on ion implantation into non-conventional GaN structures, such as non-polar thin films and nanowires. Interestingly, the damage accumulation is strongly influenced by the surface orientation of the samples, as well as their dimensionality. In particular, basal stacking faults are the dominant implantation defects in c-plane GaN films, while dislocation loops predominate in a-plane samples. Ion implantation into GaN nanowires, on the other hand, causes a much smaller density of extended defects compared to thin films. Finally, recent breakthroughs concerning dopant activation are briefly reviewed, focussing on optical doping with europium and electrical doping with magnesium.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lu, Hai, William J. Schaff, Lester F. Eastman, Volker Cimalla, Joerg Pezoldt, Oliver Ambacher, J. Wu, and Wladek Walukiewicz. "Growth of non-polar a-plane and cubic InN on r-plane sapphire by molecular beam epitaxy." MRS Proceedings 798 (2003). http://dx.doi.org/10.1557/proc-798-y12.6.

Повний текст джерела
Анотація:
ABSTRACTGrowth of non-polar III-nitrides has been an important subject recently due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. Despite study of non-polar GaN and GaN-based heterostructures, there are few reports on epitaxial growth of non-polar InN, which is also an important component of the III-nitride system. In this study, we report heteroepitaxial growth of non-polar InN on r-plane sapphire substrates using plasma-assisted molecular beam epitaxy. It is found that when a GaN buffer is used, the following InN film appears to be non-polar (1120) a-plane which follows the a-plane GaN buffer. The room temperature Hall mobility of undoped a-plane InN is around 250 cm2/Vs with a carrier concentration around 6×1018 cm-3. Meanwhile, if InN film is directly deposited on r-plane sapphire without any buffer, the InN layer is found to consist of a predominant zincblende (cubic) structure along with a fraction of the wurtzite (hexagonal) phase with increasing content with proceeding growth.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Iyer, Sandeep, David J. Smith, A. Bhattacharyya, K. Ludwig, and T. D. Moustakas. "Growth and Characterization of non-polar (11–20) GaN and AlGaN/GaN MQWs on R-plane (10–12) sapphire." MRS Proceedings 743 (2002). http://dx.doi.org/10.1557/proc-743-l3.20.

Повний текст джерела
Анотація:
ABSTRACTThe majority of GaN films and related devices have been grown along the polar [0001] direction, and epitaxial growth along non-polar directions has received much less attention. In this paper we report the study of material properties of GaN and AlGaN/GaN multiple quantum wells (MQWs) deposited on R-plane (10–12) sapphire substrates using RF plasma-assisted molecular beam epitaxy (MBE). In this growth direction, III-Nitrides grow along the non-polar [11–20] direction, with the c-axis in the plane of growth. Various nucleation steps such as surface nitridation, as well as GaN and AlN buffer layers were investigated. Our results indicate that surface nitridation of R-plane sapphire is an undesirable nucleation step, contrary to what has been observed in the case of (0001) sapphire. The AlN buffer layer leads to well-oriented films along the [11–20] direction with many threading defects and faceted surface morphology whereas the GaN buffer leads to the formation of mis-oriented domains close to the buffer region. However, these domains are overgrown and the films have smoother surface morphology with fewer threading defects. These structural findings are supported by photoluminescence and Hall effect measurements done on the same films. Photoluminescence (PL) measurements of (11–20) AlGaN/GaN MQWs show much higher intensity than for similar structures grown on the C-plane sapphire, consistent with the absence of internal fields in the non-polar direction.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Non-polar III-Nitrides"

1

Waltereit, Patrick. "(Al, Ga, In)N heterostructures grown along polar and non-polar directions by plasma-assisted molecular beam epitaxy." Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963284975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rosales, Daniel. "Etude des propriétés optiques de nanostructures quantiques semi-polaires et non-polaires à base de nitrure de gallium (GaN)." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS180/document.

Повний текст джерела
Анотація:
Nous étudions les propriétés optiques de nanostructures (Al,Ga)N/GaN crûes selon diverses orientations cristallographiques. Les orientations concernées sont : le plan non-polaire (1-100) ou plan m ; le plan semi-polaire (1-101) ou plan s ; et le plan semi-polaire (11-22). Dans un premier temps, nous nous consacrons à l'étude de l'anisotropie de la réponse optique de puits quantiques crûs selon les plans m et s. Dans un deuxième temps, nous évaluons les effets de la température sur les propriétés optiques de ces puits quantiques en utilisant la technique de photoluminescence résolue en temps qui permet d'obtenir des informations concernant les phénomènes radiatifs et non-radiatifs. S'agissant des durées de vie radiatives, nous avons mis en évidence la contribution de deux régimes de recombinaison: celui des excitons localisés, lequel est caractérisé par une durée de vie constante; et celui des excitons libres dont la durée de vie croit linéairement avec la température. Pour tous les échantillons que nous avons étudié, le régime d'excitons localisés domine à basse température alors que le régime d'excitons libres domine à haute température. Nous avons ainsi caractérisé la qualité des interfaces des puits quantiques (Al,Ga)N/GaN à partir de la détermination d'un modèle de la densité d'états de localisation. Nous trouvons qu'elle est, dans nos échantillons, encadrée par des valeurs comprises entre 10^11 - 10^12 cm-2. Notre étude montre que les puits orientés (11 22) présente la plus faible densité, et que les puits orientés selon le plan s sont les moins affectés par les phénomènes non-radiatifs. Dans un troisième temps, nous nous sommes intéressés à la caractérisation de nanostructures crûes selon le plan (11-22) pour diverses conditions de croissance. En faisant varier celles-ci, il est possible d'obtenir des boites quantiques, des fils quantiques, ou des puits quantiques. L'étude de la dynamique de recombinaison des excitons dans ces nanostructures (11-22) montre une dépendance en température de la durées de vie radiative en fonction du degré de confinement : constante pour les boîtes quantiques; proportionnelle à racine de T pour les fils ; linéaire pour les puits. Cette étude démontre la richesse de possibilités de nanostructures crûes sur des orientations non-traditionnelles elle mets en perspective de nouvelles études de croissance cristalline de nano-objets pour des applications inédites en optoélectroniques
We study the optical properties of (Al,Ga)N/GaN nanostructures grown along several crystallographic orientations. The involved orientations are: the non-polar (1-100) plane or m-plane; the semi-polar (1-101) or s-plane; and the semi-polar (11-22) plane. First, we focus on the study of the anisotropy of the optical response of quantum wells grown in m- and s-planes. Second, we evaluate the effects of the temperature on optical properties of these quantum wells by extensive utilization of the time-resolved photoluminescence technique. It allows to obtain information regarding the evolution of radiative and non-radiative phenomena with temperature. Concerning radiative decay times, we have discriminated the contributions of two recombination regimes: the recombinations of localized excitons characterized by a constant decay time; and the recombinations of free excitons whose decay time increases linearly with the temperature. For all samples studied here, the regime of recombination of localized excitons dominates at low temperature and the regime of recombination of free excitons dominates at high temperature. In addition, we characterized the quality of (Al,Ga)N/GaN interfaces by the determination of the density of localization states. The values are ranging between 10^11 cm-2 and 10^12 cm-2 in our samples. This study demonstrates that (11-22)-oriented quantum wells exhibit the lowest density, and we find that the optical properties of s-plane oriented wells are the less impacted by the non-radiative phenomena. Third, we concentrated on the characterization of nanostructures grown along (11-22) plane direction under very different growth conditions. By modifying them, it is possible to obtain either quantum dots, or quantum wires or quantum wells. The study of the exciton recombination dynamics in these (11-22)-oriented nanostructures reveals a temperature dependence of radiative decay times correlated with the dimensions of the confining potentials: it is constant for the quantum dots; proportional to square root of T for quantum wires; and linear for quantum wells. This study demonstrates the potentialities of the nanostructures grown on non-traditional orientations for optoelectronic applications
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chiang, Shu-yu, and 江書宇. "Polarization dependent photoluminescence of the non-polar III-nitrides." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/65716825314373764047.

Повний текст джерела
Анотація:
碩士
國立中山大學
物理學系研究所
98
Polarization dependent photoluminescence (PL) study in 10K of m-plane III-nitrides was discussed in this thesis. Two samples were investigated: m-plane GaN film grown on m-sapphire substrate and m-plane InGaN film grown on m-GaN/m-sapphire substrate by plasma -assisted molecular beam epitaxy (PAMBE). Polarized luminescence characteristics were told by polarization dependent PL spectra in these two samples. Circular polarized, linear polarized and unpolarized laser sources were used to excite the samples. The results showed the PL intensity along the a-axis of the sample was stronger than along the c-axis with a polarization ratio with 65%; moreover, the peak positions showed polarization independent characteristic under a low temperature environment with 10K.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Non-polar III-Nitrides"

1

As, D. J. "Recent developments on non-polar cubic group III nitrides for optoelectronic applications." In OPTO, edited by Manijeh Razeghi, Rengarajan Sudharsanan, and Gail J. Brown. SPIE, 2010. http://dx.doi.org/10.1117/12.846846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії