Дисертації з теми "Non-ergodicity in many body systems"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Non-ergodicity in many body systems.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-24 дисертацій для дослідження на тему "Non-ergodicity in many body systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Fusco, Lorenzo. "Non-equilibrium thermodynamics in quantum many-body systems." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706680.

Повний текст джерела
Анотація:
Thermodynamics is one of the pillars of modern science. Understanding which are the boundaries for the applicability of a theory is fundamental for every science and thermodynamics makes no exception. This Thesis studied the implications of thermodynamic transformations applied to quantum systems, particularly discussing the limits of a proper thermodynamic interpretation of such a transformation for a quantum many-body system. First a framework is developed to give a physical meaning to the full statistics of the work distributions for a many-body system, with particular emphasis on the quantum Ising model. Signatures of criticality are found at any level of the statistics of the work distribution. Furthermore, a detailed study of cyclic work extraction protocols is reported, for the case of the Dicke model, analysing the interplay between entanglement and phase transition from the point of view of non-equilibrium thermodynamics. Afterwards, a study of non-equilibrium thermodynamics of open quantum systems is reported. The first experimental reconstruction of the irreversible entropy production for a critical quantum manybody system is demonstrated, showing an excellent agreement with the theoretical predictions. Finally, in the framework of thermodynamics of quantum jump trajectories, a novel approach to the resolution of the large-deviation function is derived. Using this method many studies on the thermodynamics of open quantum many-body systems can be realised in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Henriet, Loïc. "Non-equilibrium dynamics of many body quantum systems." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX036/document.

Повний текст джерела
Анотація:
Cette thèse porte sur l'étude de propriétés dynamiques de modèles quantiques portés hors équilibre. Nous introduisons en particulier des modèles généraux de type spin-boson, qui décrivent par exemple l'interaction lumière-matière ou certains phénomènes de dissipation. Nous contribuons au développement d'une approche stochastique exacte permettant de d'écrire la dynamique hors équilibre du spin dans ces modèles. Dans ce contexte, l'effet de l'environnement bosonique est pris en compte par l'intermédiaire des degrés de liberté stochastiques supplémentaires, dont les corrélations temporelles dépendent des propriétés spectrales de l'environnement bosonique. Nous appliquons cette approche à l'étude de phénomènes à N-corps, comme par exemple la transition de phase dissipative induite par un environnement bosonique de type ohmique. Des phénomènes de synchronisation spontanée, et de transition de phase topologique sont aussi identifiés. Des progrès sont aussi réalisés dans l'étude de la dynamique dans les réseaux de systèmes lumière-matière couplés. Ces développements théoriques sont motivés par les progrès expérimentaux récents, qui permettent d'envisager une étude approfondie de ces phénomènes. Cela inclut notamment les systèmes d'atomes ultra-froids, d'ions piégés, et les plateformes d'électrodynamique en cavité et en circuit. Nous intéressons aussi à la physique des systèmes hybrides comprenant des dispositifs à points quantiques mésoscopiques couplés à un résonateur électromagnétique. L'avènement de ces systèmes permet de mesures de la formation d'états à N-corps de type Kondo grâce au résonateur; et d'envisager des dispositifs thermoélectriques
This thesis deals with the study of dynamical properties of out-of-equilibrium quantum systems. We introduce in particular a general class of Spin-Boson models, which describe for example light-matter interaction or dissipative phenomena. We contribute to the development of a stochastic approach to describe the spin dynamics in these models. In this context, the effect of the bosonic environment is encapsulated into additional stochastic degrees of freedom whose time-correlations are determined by spectral properties of the bosonic environment. We use this approach to study many-body phenomena such as the dissipative quantum phase transition induced by an ohmic bosonic environment. Synchronization phenomena as well as dissipative topological transitions are identified. We also progress in the study of arrays of interacting light-matter systems. These theoretical developments follow recent experimental achievements, which could ensure a quantitative study of these phenomena. This notably includes ultra-cold atoms, trapped ions and cavity and circuit electrodynamics setups. We also investigate hybrid systems comprising electronic quantum dots coupled to electromagnetic resonators, which enable us to provide a spectroscopic analysis of many-body phenomena linked to the Kondo effect. We also introducethermoelectric applications in these devices
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fedorov, Aleksey. "Non-conventional Many-body Phases in Ultracold Dipolar Systems." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS580/document.

Повний текст джерела
Анотація:
Le problème de la détection et de ladescription des nouveaux états quantiquesmacroscopiques, caractérisées par des propriétésexotiques et non-conventionnelles, estd’importance fondamentale dans la physiquemoderne. Ces états offrent des perspectivesfascinantes dans le domaine de traitementd’information, de simulations quantiques et derecherche des nouveaux types des matériaux.Dans ce travail de thèse nous développons unethéorie qui permet de décrire des phases non conventionnellesdans des systèmes des gazultra-froids dipolaires. Ces systèmes sontactivement étudiés expérimentalement enutilisant des atomes à grand-spins, desmolécules polaires et des excitations dipolairesdans des semi-conducteurs. Nous mettonsl'accent sur la révélation du rôle de l’interactiondipôle-dipôle à long porté.Nous considérons l’effet de rotonization dansun système de gaz des bosons dipolaires «tiltés»aux interactions faibles dans une couchehomogène. Nous prédisons l’effet derotonization pour un gaz de Bose faiblementcorrélé des excitons dipolaires dans une couchede semi-conducteur et nous calculons lediagramme de stabilité. Ensuite, nousconsidérons des superfluides d’onde-p desfermions identiques dans des réseaux 2D.Finalement, nous faisons une discussion sur unautre état superfluide intéressant des moléculespolaires fermioniques, qui devrait apparaitredans des systèmes bicouches
The problem of revealing anddescribing novel macroscopic quantum statescharacter- ized by exotic and non-conventionalproperties is of fundamental importance formodern physics. Such states offer fascinatingprospects for potential applications in quantumin- formation processing, quantum simulation,and material research. In the present Thesis wedevelop a theory for describing nonconventionalphases of ultracold dipolar gases.The related systems of large-spin atoms, polarmolecules, and dipolar excitons in semiconductorsare actively studied in experiments.We put the main emphasis on revealing the roleof the long-range character of the dipole-dipoleinteraction.We consider the effect of rotonization for a 2Dweakly interacting gas of tilted dipolar bosonsin a homogeneous layer. We predict the effectof rotonization for a weakly correlated Bosegas of dipolar excitons in a semiconductorlayer and calculate the stability diagram. Wethen consider p-wave superfluids of identicalfermions in 2D lattices. Finally, we discussanother interesting novel superfluid offermionic polar molecules
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gils, Charlotte. "Phases of interacting many-body systems: from classical systems to non-abelian anyons /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Moosavi, Per. "Interacting fermions and non-equilibrium properties of one-dimensional many-body systems." Licentiate thesis, KTH, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193330.

Повний текст джерела
Анотація:
Recent experimental progress on ultracold atomic gases have opened up the possibility to simulate many-body systems out of equilibrium. We consider such a system described by the Luttinger model, which is a model of interacting fermions in one spatial dimension. It is well known that the Luttinger model is exactly solvable using bosonization. This also remains true for certain extensions of the model, e.g., where, in addition, the fermions are coupled to phonons. We give a self-contained account of bosonization, together with complete proofs, and show how this can be used to solve the Luttinger model and the above fermion-phonon model rigorously. The main focus is on non-equilibrium properties of the Luttinger model. We use the exact solution of the Luttinger model, with non-local interactions, to study the evolution starting from a non-uniform initial state with a position-dependent chemical potential. The system is shown to reach a current-carrying final steady state, in which the universal value of the electrical conductance, known from near-to-equilibrium settings, is recovered. We also study the effects of suddenly changing the interactions and show that the final state has memory of the initial state, which is, e.g., manifested by non- equilibrium exponents in its fermion two-point correlation functions.

QC 20161003

Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.

Повний текст джерела
Анотація:
In this thesis we study three examples of interacting many-body systems undergoing a non equilibrium time evolution. Firstly we consider the time evolution in an integrable system: the sine-Gordon field theory in the repulsive regime. We will focus on the one point function of the semi-local vertex operator eiβφ(x)/2 on a specific class of initial states. By analytical means we show that the expectation value considered decays exponentially to zero at late times and we determine the decay time. The method employed is based on a form-factor expansion and uses the "Representative Eigenstate Approach" of Ref. [73] (a.k.a. "Quench Action"). In a second example we study the time evolution in models close to "special" integrable points characterised by hidden symmetries generating infinitely many local conservation laws that do not commute with one another, in addition to the infinite commuting family implied by integrability. We observe that both in the case where the perturbation breaks the integrability and when it breaks only the additional symmetries maintaining integrability, the local observables show a crossover behaviour from an initial to a final quasi stationary plateau. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-1/2 chain with additional perturbations that break integrability. Finally, we study the effects of integrability breaking perturbations on the non-equilibrium evolution of more general many-particle quantum systems, where the unperturbed integrable model is generic. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalisations of quantum Boltzmann equations. We benchmark our method against time dependent density matrix renormalisation group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalisation plateaux for local observables on all accessible time scales. Increasing the strength of the integrability breaking term induces a "drift" away from the prethermalisation plateaux towards thermal behaviour. We identify a time scale characterising this crossover.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Buchhold, Michael. "Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-181786.

Повний текст джерела
Анотація:
Thermalization, the evolution of an interacting many-body system towards a thermal Gibbs ensemble after initialization in an arbitrary non-equilibrium state, is currently a phenomenon of great interest, both in theory and experiment. As the time evolution of a quantum system is unitary, the proposed mechanism of thermalization in quantum many-body systems corresponds to the so-called eigenstate thermalization hypothesis (ETH) and the typicality of eigenstates. Although this formally solves the contradiction of thermalizing but unitary dynamics in a closed quantum many-body system, it does neither make any statement on the dynamical process of thermalization itself nor in which way the coupling of the system to an environment can hinder or modify the relaxation dynamics. In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the presence of drive and dissipation, introduced by coupling the intra-cavity radiation field to the photon vacuum outside the cavity via lossy mirrors, the quantum glass state is modified in a universal manner. For frequencies below the photon loss rate, the dissipation takes over and the system shows the universal behavior of a dissipative spin glass, with a characteristic spectral density $\\mathcal{A}(\\omega)\\sim\\sqrt{\\omega}$. On the other hand, for frequencies above the loss rate, the system retains the universal behavior of a zero temperature, quantum spin glass. Remarkably, at the glass transition, the two subsystems of spins and photons thermalize to a joint effective temperature, even in the presence of photon loss. This thermalization is a consequence of the strong spin-photon interactions, which favor detailed balance in the system and detain photons from escaping the cavity. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description, which, due to its large degree of universality, is of intense theoretical and experimental interest. A set of recent experiments in research groups in Vienna, Innsbruck and Munich have probed the non-equilibrium time-evolution of one-dimensional quantum fluids for different experimental realizations and are pushing into a time regime, where thermalization is expected. From a theoretical point of view, one-dimensional quantum fluids are particular interesting, as Luttinger Liquids are integrable and therefore, due to an infinite number of constants of motion, do not thermalize. The leading order correction to the quadratic theory is irrelevant in the sense of the renormalization group and does therefore not modify static correlation functions, however, it breaks integrability and will therefore, even if irrelevant, induce a completely different non-equilibrium dynamics as the quadratic Luttinger theory alone. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermi\'s golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate $\\sigma^R=\\mbox\\Sigma^R$, determined by the self-energy at equilibrium. However, for long times $\\tau$, it also reveals the presence of dynamical slow modes, which are the consequence of exactly energy conserving dynamics and lead to an algebraic decay $\\sim\\tau^$ with $\\eta_D=0.58$. The presence of these dynamical slow modes is not contained in the equilibrium Matsubara formalism, while they emerge naturally in the non-equilibrium formalism developed in this thesis. In order to initialize a one-dimensional quantum fluid out of equilibrium, we consider an interaction quench in a model of interacting, dispersive fermions in Chap.~\\ref. In this scenario, the fermionic interaction is suddenly changed at time $t=0$, such that for $t>0$ the system is not in an eigenstate and therefore undergoes a non-trivial time evolution. For the quadratic theory, the stationary state in the limit $t\\rightarrow\\infty$ is a non-thermal, or prethermal, state, described by a generalized Gibbs ensemble (GGE). The GGE takes into account for the conservation of all integrals of motion, formed by the eigenmodes of the Hamiltonian. On the other hand, in the presence of non-linearities, the final state for $t\\rightarrow\\infty$ is a thermal state with a finite temperature $T>0$. . The spatio-temporal, dynamical thermalization process can be decomposed into three regimes: A prequench regime on the largest distances, which is determined by the initial state, a prethermal plateau for intermediate distances, which is determined by the metastable fixed point of the quadratic theory and a thermal region on the shortest distances. The latter spreads sub-ballistically $\\sim t^$ in space with $0<\\alpha<1$ depending on the quench. Until complete thermalization (i.e. for times $t<\\infty$), the thermal region contains more energy than the prethermal and prequench region, which is expressed in a larger temperature $T_{t}>T_$, decreasing towards its final value $T_$. As the system has achieved local detailed balance in the thermalized region, energy transport to the non-thermal region can only be performed by the macroscopic dynamical slow modes and the decay of the temperature $T_{t}-T_\\sim t^$ again witnesses the presence of these slow modes. The very slow spreading of thermalization is consistent with recent experiments performed in Vienna, which observe a metastable, prethermal state after a quench and only observe the onset of thermalization on much larger time scales. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. For this quench scenario, the step in the Fermi distribution at the Fermi momentum $k\\sub$ decays to zero algebraically in the absence of a non-linearity but as a stretched exponential (the exponent being proportional to the non-linearity) in the presence of a finite non-linearity. This can serve as a proof for the presence or absence of the non-linearity even on time-scales for which thermalization can not yet be observed. Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system\'s $U(1)$-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate $\\partial_tn_q\\sim\\gamma |q|$. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to $x_t\\sim t^{4/5}$. For larger distances, the system is described by an non-equilibrium phonon distribution $n_q\\sim |q|$, which leads to a new, non-equilibrium behavior of large distance observables. For instance, the phonon decay rate scales universally as $\\gamma_q\\sim |q|^{5/3}$, with a new non-equilibrium exponent $\\eta=5/3$, which differs from equilibrium. This new, universal behavior is guaranteed by the $U(1)$ invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, $\\eta=5/3$ and for the spreading of thermalization $\\eta_T=4/5$. Remarkably, even in the presence of this strong external drive, the interactions and their aim to achieve detailed balance are strong enough to establish a locally emerging and spatially spreading thermal region. The physical setups in this thesis do not only reveal interesting and new dynamical features in the out-of-equilibrium time evolution of interacting systems, but they also strongly underline the high degree of universality of thermalization for the classes of models studied here. May it be a system of coupled spins and photons, where the photons are pulled away from a thermal state by Markovian photon decay caused by a leaky cavity, a one-dimensional fermionic quantum fluid, which has been initialized in an out-of-equilibrium state by a quantum quench or a one-dimensional bosonic quantum fluid, which is driven away from equilibrium by continuous, external heating, all of these systems at the end establish a local thermal equilibrium, which spreads in space and leads to global thermalization for $t\\rightarrow\\infty$. This underpins the importance of thermalizing collisions and endorses the standard approach of equilibrium statistical mechanics, describing a physical system in its steady state by a thermal Gibbs ensemble.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schiulaz, Mauro. "Ideal quantum glass transitions: many-body localization without quenched disorder?" Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4908.

Повний текст джерела
Анотація:
In this work the role of disorder, interaction and temperature in the physics of quantum non-ergodic systems is discussed. I first review what is meant by thermalization in closed quantum systems, and how ergodicity is violated in the presence of strong disorder, due to the phenomenon of Anderson localization. I explain why localization can be stable against the addition of weak dephasing interactions, and how this leads to the very rich phenomenology associated with many-body localization. I also briefly compare localized systems with their closest classical analogue, which are glasses, and discuss their similarities and differences, the most striking being that in quantum systems genuine non ergodicity can be proven in some cases, while in classical systems it is a matter of debate whether thermalization eventually takes place at very long times. Up to now, many-body localization has been studies in the region of strong disorder and weak interaction. I show that strongly interacting systems display phenomena very similar to localization, even in the absence of disorder. In such systems, dynamics starting from a random inhomogeneous initial condition are non-perturbatively slow, and relaxation takes place only in exponentially long times. While in the thermodynamic limit ergodicity is ultimately restored due to rare events, from the practical point of view such systems look as localized on their initial condition, and this behavior can be studied experimentally. Since their behavior shares similarities with both many-body localized and classical glassy systems, these models are termed “quantum glasses”. Apart from the interplay between disorder and interaction, another important issue concerns the role of temperature for the physics of localization. In non-interacting systems, an energy threshold separating delocalized and localized states exist, termed “mobility edge”. It is commonly believed that a mobility edge should exist in interacting systems, too. I argue that this scenario is inconsistent because inclusions of the ergodic phase in the supposedly localized phase can serve as mobile baths that induce global delocalization. I conclude that true non-ergodicity can be present only if the whole spectrum is localized. Therefore, the putative transition as a function of temperature is reduced to a sharp crossover. I numerically show that the previously reported mobility edges can not be distinguished from finite size effects. Finally, the relevance of my results for realistic experimental situations is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Staniscia, Fabio. "Out-of-equilibrium behavior of many-body Hamiltonian systems with different interaction ranges." Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/4972.

Повний текст джерела
Анотація:
2009/2010
In this Thesis we describe the theoretical-computational study performed on the behavior of isolated systems, far from thermodynamic equilibrium. Analyzing models well-known in literature we follow a path bringing to the classification of different behaviors in function of the interaction range of the systems' particles. In the case of systems with long-range interaction we studied the "Quasi-Stationary states" (QSSs) which emerge at short times when the system evolves with Hamiltonian dynamics. Their interest is in the fact that in many physical systems, such as self-gravitating systems, plasmas and systems characterized by wave-particle interaction, QSSs are the only experimentally accessible regime. QSS are defined as stable solutions of the Vlasov equation and, as their duration diverges with the system size, for large systems' size they can be seen as the true equilibria. They do not follow the Boltzmann statistics, and it does not exists a general theory which describes them. Anyway it is possible to give an approximate description using Lynden-Bell theory. One part of the thesis is devoted to shed light on the characteristics of the phase diagram of the "Hamiltonian mean field" model (HMF), during the QSS, calculated with the Lynden-Bell theory. The results of our work allowed to confirm numerically the presence of a phase re-entrance. In the Thesis is present also a detailed description on the system's caloric curves and on the metastability. Still in this context we show an analysis of the equivalence of the statistical ensembles, confirmed in almost the totality of the phase diagram (except for a small region), although the presence of negative specific heat in the microcanonical ensemble, which in Boltzmannian systems implies the non-equivalence of statistical ensembles. This result allowed us to arrive to a surprising conclusion: the presence of negative specific heat in the canonical ensemble. Still in the context of long-range interacting systems we analyze the linear stability of the non-homogeneous QSSs with respect to the Vlasov equation. Since the study of QSS find an application in the Free-electron laser (FEL) and other light sources, which are characterized by wave-particle interaction, we analyze, in the last chapter, the experimental perspectives of our work in this context. The other class of systems we studied are short-range interacting systems. Here the behavior of the components of the system is strongly influenced by the neighbors, and if one takes a system in a disordered state (a zero magnetization state for magnetic systems), which relaxes towards an ordered equilibrium state, one sees that the ordering process first develops locally and then extends to the whole system forming domains of opposed magnetization which grow in size. This process is called "coarsening". Our work in this field consisted in investigating numerically the laws of scale, and in the Thesis we characterize the temporal dependence of the domain sizes for different interaction ranges and we show a comparison between Hamiltonian and Langevin dynamics. This work inserts in the open debate on the equivalence of different dynamics where we found that, at least for times not too large, the two dynamics give different scaling laws.
In questa Tesi è stato fatto uno studio di natura teorico-computazionale sul comportamento dei sistemi isolati lontani dall'equilibrio termodinamico. Analizzando modelli noti in letteratura è stato seguito un percorso che ha portato alla classificazione di differenti comportamenti in funzione del range di interazione delle particelle del sistema. Nel caso di sistemi con interazione a lungo raggio sono stati studiati gli "stati quasi-stazionari" (QSS) che emergono a tempi brevi quando il sistema evolve con dinamica hamiltoniana. Il loro interesse risiede nel fatto che in molti sistemi fisici, come i sistemi auto-gravitanti, plasmi e sistemi caratterizzati da interazione onda-particella, i QSS risultano essere gli unici regimi accessibili sperimentalmente. I QSS sono definiti come soluzioni stabili dell'equazione di Vlasov, e visto che la loro durata diverge con la taglia del sistema, per sistemi di grandi dimensioni possono essere visti come i veri stati di equilibrio. Questi non seguono la statistica di Bolzmann, e non esiste una teoria generale che li descriva. E' tuttavia possibile fare una descrizione approssimata utilizzando la teoria di Lynden-Bell. Una parte della tesi è dedicata alla comprensione delle caratteristiche del diagramma di fase del modello "Hamiltonian mean field" (HMF) durante il QSS, calcolato con la teoria di Lynden-Bell. Il risultato del nostro lavoro ha permesso di confermare numericamente la presenza di fasi rientrati. E' inoltre presente un'analisi dettagliata sulle curve caloriche del sistema e sulla metastabilità. Sempre in questo contesto è stata fatto uno studio sull'equivalenza degli ensemble statistici, confermata nella quasi totalità del diagramma di fase (tranne in una piccola regione), nonostante la presenza di calore specifico negativo nell'insieme microcanonico, che in sistemi Boltzmanniani è sinonimo di non-equivalenza degli ensemble statistici. Questo risultato ci ha permesso di arrivare ad una sorprendente conclusione: la presenza di calore specifico negativo nell'insieme canonico. Sempre nel contesto dei sistemi con interazione a lungo range, è stata analizzata la stabilità lineare rispetto all'equazione di Vlasov degli stati quasi-stazionari non-omogenei. Poiché lo studio dei QSS trova applicazione nel Free-electron laser (FEL) e in altre sorgenti di luce, caratterizzate dall'interazione onda-particella, abbiamo analizzato anche le prospettive sperimentali del nostro lavoro in questo contesto. L'altra classe di sistemi che è stata studiata sono i sistemi con interazione a corto raggio. Qui il comportamento dei componenti del sistema è fortemente influenzato dai vicini, e se si prende un sistema in uno stato disordinato (a magnetizzazione nulla nei sistemi magnetici) che rilassa verso l'equilibrio ordinato, si vede che il processo di ordinamento si sviluppa prima localmente e poi si estende a tutto il sistema formando dei domini di magnetizzazione opposta che crescono in taglia. Questo processo si chiama "coarsening". Il nostro lavoro in questo contesto è consistito in una investigazione numerica delle leggi di scala, e nella tesi è stata caratterizzata la dipendenza temporale della taglia dei domini per differenti range di interazione ed è stato fatto un confronto fra dinamica hamiltoniana e dinamica di Langevin. Questi risultati si inseriscono nel dibattito aperto sull'equivalenza di differenti dinamiche, e si è mostrato che, almeno per tempi non troppo grandi, le due dinamiche portano a leggi di scala differenti.
XXIII Ciclo
1982
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roggero, Alessandro. "Ground state and dynamical properties of many-body systems by non conventional Quantum Monte Carlo algorithms." Doctoral thesis, Università degli studi di Trento, 2014. https://hdl.handle.net/11572/367745.

Повний текст джерела
Анотація:
In this work we develop Quantum Monte Carlo techniques suitable for exploring both ground state and dynamical properties of interacting many-body systems. We then apply these techniques to the study of excitations in superfluid He4 and to explore the structure of nuclear systems using chiral effective field theory interactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Roggero, Alessandro. "Ground state and dynamical properties of many-body systems by non conventional Quantum Monte Carlo algorithms." Doctoral thesis, University of Trento, 2014. http://eprints-phd.biblio.unitn.it/1340/1/Thesis.pdf.

Повний текст джерела
Анотація:
In this work we develop Quantum Monte Carlo techniques suitable for exploring both ground state and dynamical properties of interacting many-body systems. We then apply these techniques to the study of excitations in superfluid He4 and to explore the structure of nuclear systems using chiral effective field theory interactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hafver, Andreas. "The formalism of non-commutative quantum mechanics and its extension to many-particle systems." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5255.

Повний текст джерела
Анотація:
Thesis (MSc (Physics))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates the notion of a fundamental shortest length scale by introducing non-commuting position coordinates. Various theories of quantum gravity indicate the existence of such a shortest length scale in nature. It has furthermore been realised that certain condensed matter systems allow effective descriptions in terms of non-commuting coordinates. As a result, non-commutative quantum mechanics has received increasing attention recently. A consistent formulation and interpretation of non-commutative quantum mechanics, which unambiguously defines position measurement within the existing framework of quantum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter formalism, extends it to many-particle systems and links it up with non-commutative quantum field theory via second quantisation. It is shown that interactions of particles, among themselves and with external potentials, are altered as a result of the fuzziness induced by non-commutativity. For potential scattering, generic increases are found for the differential and total scattering cross sections. Furthermore, the recovery of a scattering potential from scattering data is shown to involve a suppression of high energy contributions, disallowing divergent interaction forces. Likewise, the effective statistical interaction among fermions and bosons is modified, leading to an apparent violation of Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities.
AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate. Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet. ’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika, wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi ¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak. Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata ’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied. Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander, wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge vir termodinamika by ho¨e digthede.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Giardinelli, Vito. "Quasi-random systems: duality transformations and numerical simulations." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25121/.

Повний текст джерела
Анотація:
For classical systems, the concept of thermalization, introduced by Boltzmann in 19th century, is the main instrument for explaining the equilibrium thermodynamics. For quantum systems, although the Schrodinger unitary evolution is deterministic and invertible, it is possible to extend the thermalization concept by considering a subsystem that thermalizes with the rest of the system. However, as in the classical case, there is a class of systems that violate the ergodic principle and do not thermalize. This phenomenon of egodicity breaking is present in models with disorder introduced by P.W. Anderson in 1958. In chapter 1 of our work, we present the class of quasi-random systems, showing their most important features like the ergodicity breaking, the self-duality and the presence of mobility edges. In chapter 2, as original work, we found the phase transition lines of the superconducting Aubry-André model using the analytical tool of the duality transformations. Moreover, we investigate directly the many body localization performing simulations of several quantities like the IPR, the imbalance and the fidelity to detect the many body localization. In the last chapter, we analyse the Jordan-Wigner and Bravy-Kitaev transformations for the quantum simulation of our fermionic systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Covito, Fabio [Verfasser], and Angel [Akademischer Betreuer] Rubio. "An efficient ab-initio non-equilibrium Green's function approach to carrier dynamics in many-body interacting systems / Fabio Covito ; Betreuer: Angel Rubio." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1218688459/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ricaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude mathématique de deux systèmes quantiques décrits par des modèles non linéaires : le polaron anisotrope et les électrons d'un cristal périodique. Après avoir prouvé l'existence de minimiseurs, nous nous intéressons à la question de l'unicité pour chacun des deux modèles. Dans une première partie, nous montrons l'unicité du minimiseur et sa non-dégénérescence pour le polaron décrit par l'équation de Choquard--Pekar anisotrope, sous la condition que la matrice diélectrique du milieu est presque isotrope. Dans le cas d'une forte anisotropie, nous laissons la question de l'unicité en suspens mais caractérisons précisément les symétries pouvant être dégénérées. Dans une seconde partie, nous étudions les électrons d'un cristal dans le modèle de Thomas--Fermi--Dirac--Von~Weizsäcker périodique, en faisant varier le paramètre devant le terme de Dirac. Nous montrons l'unicité et la non-dégénérescence du minimiseur lorsque ce paramètre est suffisamment petit et mettons en évidence une brisure de symétrie lorsque celui-ci est grand
This thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Angelone, Adriano. "Strongly correlated systems of bosons and fermions : a diagrammatic, variational and path integral Monte Carlo study." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF028/document.

Повний текст джерела
Анотація:
Mon travail de thèse se concentre sur l'étude, à l'aide de techniques numériques, de systèmes de fermions et bosons fortement corrélés. J'étudie Hamiltoniens de bosons sur réseau avec interactions à portée étendue, avant un intérêt pour expériences concernant atomes en états Rydberg-dressed, par moyen de simulations Path Integral Monte Carlo. Mon résultat principal est la démonstration d'un état de superverre en absence de sources de frustration dans le système.J'étudie également la modèle t-J fermionique avec deux trous par moyen de simulationsVariational Monte Carlo avec l’ansatz Entangled Plaquette States (EPS). Mon étude est fondamental en la perspective d'appliquer l'ansatz EPS à autres systèmes fermioniques, d’intérêt pour la supraconductivité à haute temperature, dont le comportement n'a pas encore été déterminé. Finalement, je présente mon travail sur une implémentation de l'algorithme Diagrammatic Monte Carlo
The focus of my thesis is the investigation, via numerical approaches, of strongly correlated models of bosons and fermions. I study bosonic lattice Hamiltonians with extended--range interactions, of interest for experiments with cold Rydberg-dressed atoms, via Path Integral MonteCarlo simulations. My main result is the demonstration of a superglass in the absence of frustration sources in the system. I also study the fermionic $t-J$ model in the presence of two holes via Variational Monte Carlo with the Entangled Plaquette States Ansatz. My study is foundational to the extension of this approach to other fermionic systems, of interest for high temperature superconductivity, where the physical picture is still under debate (such as, e.g., the $t-J$ model in the case of finite hole concentration). Finally, I discuss my work on an implementation of the Diagrammatic Monte Carlo algorithm
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wu, Jiaxin. "Topics in Cold Atoms Related to Quantum Information Processing and A Machine Learning Approach to Condensed Matter Physics." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156320039156199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Rossi, Dario. "Fracton phases: analytical description and simulations of their thermal behavior." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23919/.

Повний текст джерела
Анотація:
Many-body physics studies the collective behavior of systems with a large number of microscopic constituents. The interaction between the fundamental particles creates a common behavior within the system with emergent excitations exhibiting uncommon characteristics. In three spatial dimensions it has recently been found that a new kind of particles can exist characterized by a fractionalized mobility, being either immobile or mobile only along sub-dimensional spaces: fractons. In this thesis I explore fracton phases focusing on their topological and thermal properties. Fractons can be explained as a generalization of usual topological particles with some fundamental differences, which make fracton order a new field on its own. Fracton models are studied first from the point of view of exactly solvable lattice spin models, focusing on the similarities and differences with usual topological models. Fracton phases are also described through the use of symmetric tensor gauge theory. This gives a theoretical background which is used to explore some possible phases at finite densities of fractons, like Fermi liquids and quantum Hall states. The thermal properties of such systems are studied in detail through the use of numerical simulations relying on exact-diagonalization. Various correspondences with systems featuring quantum many-body scars are found, in particular with the PXP model. The non-thermal behavior of the models under study is justified by the fragmentation of the Hilbert space in a large number of separated sub-sectors, not related to symmetries of the model. Further, the range of the local Hamiltonian operators is found to be of fundamental relevance in the thermal properties of the system. For certain ranges it is observed that the models are not able to reach the thermal state at long times. Instead, increasing the length of interactions the system becomes ergodic, with the exception of a small number of special eigenstates which remain non-thermal.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Finsterhölzl, Regina Anna [Verfasser], Andreas [Akademischer Betreuer] Knorr, Andreas [Gutachter] Knorr, and Uwe [Gutachter] Bandelow. "Non-Markovian open quantum many-body system dynamics / Regina Anna Finsterhölzl ; Gutachter: Andreas Knorr, Uwe Bandelow ; Betreuer: Andreas Knorr." Berlin : Technische Universität Berlin, 2021. http://d-nb.info/122744432X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Geier, Kevin Thomas. "Probing Dynamics and Correlations in Cold-Atom Quantum Simulators." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/351120.

Повний текст джерела
Анотація:
Cold-atom quantum simulators offer unique possibilities to prepare, manipulate, and probe quantum many-body systems. However, despite the high level of control in modern experiments, not all observables of interest are easily accessible. This thesis aims at establishing protocols to measure currently elusive static and dynamic properties of quantum systems. The experimental feasibility of these schemes is illustrated by means of numerical simulations for relevant applications in many-body physics and quantum simulation. In particular, we introduce a general method for measuring dynamical correlations based on non-Hermitian linear response. This enables unbiased tests of the famous fluctuation-dissipation relation as a probe of thermalization in isolated quantum systems. Furthermore, we develop ancilla-based techniques for the measurement of currents and current correlations, permitting the characterization of strongly correlated quantum matter. Another application is geared towards revealing signatures of supersolidity in spin-orbit-coupled Bose gases by exciting the relevant Goldstone modes. Finally, we explore a scenario for quantum-simulating post-inflationary reheating dynamics by parametrically driving a Bose gas into the regime of universal far-from-equilibrium dynamics. The presented protocols also apply to other analog quantum simulation platforms and thus open up promising applications in the field of quantum science and technology.
I simulatori quantistici ad atomi freddi offrono possibilità uniche per preparare, manipolare e sondare sistemi quantistici a molti corpi. Tuttavia, nonostante l'alto livello di controllo raggiunto negli esperimenti moderni, non tutte le osservabili di interesse sono facilmente accessibili. Lo scopo di questa tesi è quello di stabilire protocolli per misurare delle proprietà statiche e dinamiche dei sistemi quantistici attualmente inaccessibili. La fattibilità sperimentale di questi schemi è illustrata mediante simulazioni numeriche per applicazioni rilevanti nella fisica a molti corpi e nella simulazione quantistica. In particolare, introduciamo un metodo generale per misurare le correlazioni dinamiche basato su una risposta lineare non hermitiana. Ciò consente test imparziali della famosa relazione fluttuazione-dissipazione come sonda di termalizzazione in sistemi quantistici isolati. Inoltre, sviluppiamo tecniche basate su ancilla per la misura di correnti e correlazioni di corrente, consentendo la caratterizzazione della materia quantistica fortemente correlata. Un'altra applicazione è orientata a rivelare l'impronta della supersolidità nei gas Bose con accoppiamento spin-orbita eccitando il corrispondente modo di Goldstone. Infine, esploriamo uno scenario per la simulazione quantistica della dinamica di riscaldamento post-inflazione modulando parametricamente un gas Bose e portandolo nel regime della dinamica universale lontana dall'equilibrio. I protocolli presentati si applicano anche ad altre piattaforme di simulazione quantistica analogica e aprono quindi applicazioni promettenti nel campo della scienza e della tecnologia quantistica.
Quantensimulatoren auf Basis ultrakalter Atome eröffnen einzigartige Möglichkeiten zur Präparation, Manipulation und Untersuchung von Quanten-Vielteilchen-Systemen. Trotz des hohen Maßes an Kontrolle in modernen Experimenten sind jedoch nicht alle interessanten Observablen auf einfache Weise zugänglich. Ziel dieser Arbeit ist es, Protokolle zur Messung aktuell nur schwer erfassbarer statischer und dynamischer Eigenschaften von Quantensystemen zu etablieren. Die experimentelle Realisierbarkeit dieser Verfahren wird durch numerische Simulationen anhand relevanter Anwendungen in der Vielteilchenphysik und Quantensimulation veranschaulicht. Insbesondere wird eine allgemeine Methode zur Messung dynamischer Korrelationen basierend auf der linearen Antwort auf nicht-hermitesche Störungen vorgestellt. Diese ermöglicht unabhängige Tests des berühmten Fluktuations-Dissipations-Theorems als Indikator der Thermalisierung isolierter Quantensysteme. Darüber hinaus werden Verfahren zur Messung von Strömen und Strom-Korrelationen mittels Kopplung an einen Hilfszustand entwickelt, welche die Charakterisierung stark korrelierter Quantenmaterie erlauben. Eine weitere Anwendung zielt auf die Enthüllung spezifischer Merkmale von Supersolidität in Spin-Bahn-gekoppelten Bose-Einstein-Kondensaten ab, indem die relevanten Goldstone-Moden angeregt werden. Schließlich wird ein Szenario zur Quantensimulation post-inflationärer Thermalisierungsdynamik durch die parametrische Anregung eines Bose-Gases in das Regime universeller Dynamik fern des Gleichgewichts erschlossen. Die dargestellten Protokolle lassen sich auch auf andere Plattformen für analoge Quantensimulation übertragen und eröffnen damit vielversprechende Anwendungen auf dem Gebiet der Quantentechnologie.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

De, Tomasi Giuseppe. "Characterization of ergodicity breaking in disordered quantum systems." Doctoral thesis, 2018. https://tud.qucosa.de/id/qucosa%3A31975.

Повний текст джерела
Анотація:
The interplay between quenched disorder and interaction effects opens the possibility in a closed quantum many-body system of a phase transition at finite energy density between an ergodic phase, which is governed by the laws of statistical physics, and a localized one, in which the degrees of freedom are frozen and ergodicity breaks down. The possible existence of a quantum phase transition at finite energy density is strongly questioning our understanding of the fundamental laws of nature and has generated an active field of research called many-body localization. This thesis consists of three parts and is dedicated to the understanding and characterization of the phenomenon of many-body localization, approaching it from complementary facets. In particular, borrowing methods and tools from different fields, we analyze timely problems. The first part of the thesis is devoted to detecting the many-body localization transition and to characterize both the ergodic and the localized phase it separates. Here we provide a characterization from two different perspectives: the first one is based on the study of local entanglement properties. In the second one, using tools from quantum-chaos theory, we attempt to answer the question of understanding time-irreversibility, and thus probing the breaking of ergodicity. We analyze experimentally viable observables. Moreover, we propose two different quantities to distinguish an Anderson insulating phase from a many-body localized one, which is one of the issues in experiments. The second part focuses on understanding the existence of a putative subdiffusive multifractal phase. Analyzing the quantum dynamics of the system in this region of the phase diagram, we point out the importance of finite-size effects, questioning the existence of this multifractal phase. We speculate with a possible scenario in which the diffusivity and thus ergodicity could be restored in the thermodynamic limit. Furthermore, we find that the propagation is highly non-Gaussian, which could have an important effect on understanding the critical point of the according transition. We tackle this problem also from a different angle. A possible toy-model to understand many-body localization entails the Anderson model on a random-regular graph. Also in the latter model the possible existence of an intermediate multifractal phase has been conjectured. There, studying the survival return probability of a particle with time, we give a new characterization of multifractal phases and give indication of the possible existence of this phase. Nevertheless, we also outline possible caveats. In the last part of this thesis we study the interplay between symmetry and correlated disorder in a non-interacting fermionic system. We show another possible mechanism for breaking localization. In particular, we focus on studying information and particle transport, emphasizing how the two types of propagation can be different.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Biebl, Fabian Ralf Anton. "Thermalization in one-dimensional quantum-many-body systems." Doctoral thesis, 2016. http://hdl.handle.net/11858/00-1735-0000-002B-7D11-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Pandey, Mohit. "Studies of non-equilibrium behavior of quantum many-body systems using the adiabatic eigenstate deformations." Thesis, 2021. https://hdl.handle.net/2144/42972.

Повний текст джерела
Анотація:
In the last few decades, the study of many-body quantum systems far from equilibrium has risen to prominence, with exciting developments on both experimental and theoretical physics fronts. In this dissertation, we will focus particularly on the adiabatic gauge potential (AGP), which is the generator of adiabatic deformations between quantum eigenstates and also related to "fidelity susceptibility", as our lens into the general phenomenon. In the first two projects, the AGP is studied in the context of counter-diabatic driving protocols which present a way of generating adiabatic dynamics at an arbitrary pace. This is quite useful as adiabatic evolution, which is a common strategy for manipulating quantum states, is inherently a slow process and is, therefore, susceptible to noise and decoherence from the environment. However, obtaining and implementing the AGP in many-body systems is a formidable task, requiring knowledge of the spectral properties of the instantaneous Hamiltonians and control of highly nonlocal multibody interactions. We show how an approximate gauge potential can be systematically built up as a series of nested commutators, remaining well-defined in the thermodynamic limit. Furthermore, the resulting counter-diabatic driving protocols can be realized up to arbitrary order without leaving the available control space using tools from periodically-driven (Floquet) systems. In the first project, this driving protocol was successfully implemented on the electronic spin of a nitrogen vacancy in diamond as a proof of concept and in the second project, it was extended to many-body systems, where it was shown the resulting Floquet protocols significantly suppress dissipation and provide a drastic increase in fidelity. In the third project, the AGP is studied in the context of quantum chaos wherein it is found to be an extremely sensitive probe. We are able to detect transitions from non-ergodic to ergodic behavior at perturbation strengths orders of magnitude smaller than those required for standard measures. Using this alternative probe in two generic classes of spin chains, we show that the chaotic threshold decreases exponentially with system size and that one can immediately detect integrability-breaking (chaotic) perturbations by analyzing infinitesimal perturbations even at the integrable point. In some cases, small integrability-breaking is shown to lead to anomalously slow relaxation of the system, exponentially long in system size. This work paves the way for further studies in various areas such as quantum computation, quantum state preparation and quantum chaos.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sierant, Piotr. "Many-body localization of cold atoms." Praca doktorska, 2019. https://ruj.uj.edu.pl/xmlui/handle/item/87295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії