Книги з теми "Non-equilibrium and irreversible thermodynamic"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Non-equilibrium and irreversible thermodynamic.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-43 книг для дослідження на тему "Non-equilibrium and irreversible thermodynamic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Haslach, Henry W. Maximum dissipation non-equilibrium thermodynamics and its geometric structure. New York: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Woods, L. C. The thermodynamics of fluid systems. Oxford [Oxfordshire]: Clarendon Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nagnibeda, Ekaterina A. Transport properties of NO in nonequilibrium flows. Noordwijk, The Netherlands: ESA Publications Division, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Energy and entropy: Equilibrium to stationary states. New York: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alternative mathematical theory of non-equilibrium phenomena. Boston, Mass: Academic Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moreno-Piraján, Juan Carlos. Thermodynamics: Systems in equilibrium and non-equilibrium. Croatia: InTech, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Casassus, Jaime. Equilibrium commodity prices with irreversible investment and non-linear technology. Cambridge, Mass: National Bureau of Economic Research, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rastogi, R. P. Introduction to non-equilibrium physical chemistry: Towards complexity and non-linear science. Amsterdam: Elsevier, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Greenberg, Jacob H. Thermodynamic Basis of Crystal Growth: P-T-X Phase Equilibrium and Non-Stoichiometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Savolainen, Pekka. Modeling of non-isothermal vapor membrane separation with thermodynamic models and generalized mass transfer equations. Lappeenranta, Finland: Lappeenranta University of Technology, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Pedra, W. de Siqueira (Walter de Siqueira), 1975-, ed. Non-cooperative equilibria of Fermi systems with long range interactions. Providence, Rhode Island: American Mathematical Society, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mortessagne, Fabrice, G. George Batrouni, and Michel Le Bellac. Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Mortessagne, Fabrice, G. George Batrouni, and Michel Le Bellac. Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Groot, S. R. de, and P. Mazur. Non-Equilibrium Thermodynamics. Dover Publications, Incorporated, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kiehn, Robert. Non-equilibrium Thermodynamics ... Vol 1 Non-Equilibrium Systems and Irreversible Processes. Lulu.com, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Jou, David, and Georgy Lebon. Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer Berlin / Heidelberg, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kiehn, Robert. Wakes, Coherent Structures and Turbulence ... Vol 3 Non Equilibrium Systems and Irreversible Processes (Non-Equilibrium Systems and Irreversible Processes). Lulu.com, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kiehn, Robert. Universal Effectiveness of Topological Thermodynamics. . Vol 6 Non-Equilibrium Systems and Irreversible Processes. Lulu Press, Inc., 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Rau, Jochen. Processes and Responses. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199595068.003.0007.

Повний текст джерела
Анотація:
Thermodynamic processes involve energy exchanges in the forms of work, heat, or particles. Such exchanges might be reversible or irreversible, and they might be controlled by barriers or reservoirs. A cyclic process takes a system through several states and eventually back to its initial state; it may convert heat into work (engine) or vice versa (heat pump). This chapter defines work and heat mathematically and investigates their respective properties, in particular their impact on entropy. It discusses the roles of barriers and reservoirs and introduces cyclic processes. Basic constraints imposed by the laws of thermodynamics are considered, in particular on the efficiency of a heat engine. The chapter also introduces the thermodynamic potentials: free energy, enthalpy, free enthalpy, and grand potential. These are used to describe energy exchanges and equilibrium in the presence of reservoirs. Finally, this chapter considers thermodynamic coefficients which characterize the response of a system to heating, compression, and other external actions.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Tschoegl, N. W. Fundamentals of Equilibrium and Steady-State Thermodynamics. Elsevier Science & Technology Books, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Starzak, Michael E. Energy and Entropy: Equilibrium to Stationary States. Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Tschoegl, N. W. Fundamentals of Equilibrium and Steady-State Thermodynamics. Elsevier Science, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Starzak, Michael E. E. Energy and Entropy: Equilibrium to Stationary States. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Vidal, C., and A. Pacault. Synergetics: Far from Equilibrium. Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Straub, Dieter, and William F. Ames. Alternative Mathematical Theory of Non-Equilibrium Phenomena. Elsevier Science & Technology Books, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kiehn, Robert. Plasmas and Non-Equilibrium Electrodynamics ... Vol 4 Non-Equilibrium Systems and Irreversible Processes. Lulu.com, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Rastogi, R. P. Introduction to Non-equilibrium Physical Chemistry. Elsevier Science, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Rastogi, R. P. Introduction to Non-Equilibrium Physical Chemistry. Elsevier Science & Technology Books, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Thermodynamic Basis of Crystal Growth: Phase P T X Equilibrium and Non Stoichometry. Springer, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kiehn, Robert. Falaco Solitons, Cosmology and the Arrow of Time ... Vol2. Non-Equilibrium Systems and Irreversible Processes. Lulu.com, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Napolitano, Simone. Non-Equilibrium Phenomena in Confined Soft Matter: Irreversible Adsorption, Physical Aging and Glass Transition at the Nanoscale. Springer International Publishing AG, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Napolitano, Simone. Non-Equilibrium Phenomena in Confined Soft Matter: Irreversible Adsorption, Physical Aging and Glass Transition at the Nanoscale. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Napolitano, Simone. Non-equilibrium Phenomena in Confined Soft Matter: Irreversible Adsorption, Physical Aging and Glass Transition at the Nanoscale. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Loos, Sarah A. M. Stochastic Systems with Time Delay: Probabilistic and Thermodynamic Descriptions of Non-Markovian Processes Far from Equilibrium. Springer International Publishing AG, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Sherwood, Dennis, and Paul Dalby. Spontaneous changes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782957.003.0008.

Повний текст джерела
Анотація:
To set the scene for the Second Law, this (non-mathematical) chapter explores our experience of spontaneous changes - such as the expansion of a gas into a vacuum, mixing, phase changes and many chemical reactions - demonstrating that they are all irreversible, and proceed unidirectionally from non-equilibrium states to equilibrium states. Furthermore, they all comply with the First Law. The First Law therefore cannot be used as a predictor of spontaneity. What, then, can be used as a predictor?
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Strasberg, Philipp. Quantum Stochastic Thermodynamics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192895585.001.0001.

Повний текст джерела
Анотація:
Abstract Processes at the nanoscale happen far away from the thermodynamic limit, far from equilibrium and are dominated by fluctuations and, perhaps, even quantum effects. This book establishes a consistent thermodynamic framework for such processes by combining tools from non-equilibrium statistical mechanics and the theory of open quantum systems. The book is accessible for graduate students and of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability. It puts most emphasis on the microscopic derivation and understanding of key principles and concepts as well as their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon and time-reversal symmetry, among other topics. Furthermore, the book treats a few applications in detail to illustrate the general theory and its potential for practical applications. These are single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser and related set-ups in quantum optics.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Succi, Sauro. Boltzmann’s Kinetic Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0002.

Повний текст джерела
Анотація:
Kinetic theory is the branch of statistical physics dealing with the dynamics of non-equilibrium processes and their relaxation to thermodynamic equilibrium. Established by Ludwig Boltzmann (1844–1906) in 1872, his eponymous equation stands as its mathematical cornerstone. Originally developed in the framework of dilute gas systems, the Boltzmann equation has spread its wings across many areas of modern statistical physics, including electron transport in semiconductors, neutron transport, quantum-relativistic fluids in condensed matter and even subnuclear plasmas. In this Chapter, a basic introduction to the Boltzmann equation in the context of classical statistical mechanics shall be provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

North, Jill. Time in Thermodynamics. Edited by Craig Callender. Oxford University Press, 2011. http://dx.doi.org/10.1093/oxfordhb/9780199298204.003.0011.

Повний текст джерела
Анотація:
It is often claimed, or hoped, that some temporal asymmetries are explained by the thermodynamic asymmetry in time. Thermodynamics, the macroscopic physics of pressure, temperature, volume, and so on, describes many temporally asymmetric processes. Heat flows spontaneously from hot objects to cold objects (in closed systems), never the reverse. More generally, systems spontaneously move from non-equilibrium states to equilibrium states, never the reverse. Delving into the foundations of statistical mechanics, this chapter reviews the many open questions in that field as they relate to temporal asymmetry. Taking a stand on many of them, it tackles questions about the nature of probabilities, the role of boundary conditions, and even the nature and scope of statistical mechanics.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Darrigol, Olivier. The Analogical Turn (1884–1887). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816171.003.0006.

Повний текст джерела
Анотація:
This chapter recounts how Boltzmann reacted to Hermann Helmholtz’s analogy between thermodynamic systems and a special kind of mechanical system (the “monocyclic systems”) by grouping all attempts to relate thermodynamics to mechanics, including the kinetic-molecular analogy, into a family of partial analogies all derivable from what we would now call a microcanonical ensemble. At that time, Boltzmann regarded ensemble-based statistical mechanics as the royal road to the laws of thermal equilibrium (as we now do). In the same period, he returned to the Boltzmann equation and the H theorem in reply to Peter Guthrie Tait’s attack on the equipartition theorem. He also made a non-technical survey of the second law of thermodynamics seen as a law of probability increase.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Nicholson, Daniel J. Reconceptualizing the Organism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198779636.003.0007.

Повний текст джерела
Анотація:
This chapter draws on insights from non-equilibrium thermodynamics to demonstrate the ontological inadequacy of the machine conception of the organism. The thermodynamic character of living systems underlies the importance of metabolism and calls for the adoption of a processual view, exemplified by the Heraclitean metaphor of the stream of life. This alternative conception is explored in its various historical formulations, and the extent to which it captures the nature of living systems is examined. Next, the chapter considers the metaphysical implications of reconceptualizing the organism from complex machine to flowing stream. What do we learn when we reject the mechanical and embrace the processual? Three key lessons for biological ontology are identified. The first is that activity is a necessary condition for existence. The second is that persistence is grounded in the continuous self-maintenance of form. And the third is that order does not entail design.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Horing, Norman J. Morgenstern. Quantum Statistical Field Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.001.0001.

Повний текст джерела
Анотація:
The methods of coupled quantum field theory, which had great initial success in relativistic elementary particle physics and have subsequently played a major role in the extensive development of non-relativistic quantum many-particle theory and condensed matter physics, are at the core of this book. As an introduction to the subject, this presentation is intended to facilitate delivery of the material in an easily digestible form to students at a relatively early stage of their scientific development, specifically advanced undergraduates (rather than second or third year graduate students), who are mathematically strong physics majors. The mechanism to accomplish this is the early introduction of variational calculus with particle sources and the Schwinger Action Principle, accompanied by Green’s functions, and, in addition, a brief derivation of quantum mechanical ensemble theory introducing statistical thermodynamics. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green’s function equations of motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and non-equilibrium Green’s functions, and their associated spectral representations and approximation procedures. Phenomenology emerging in these discussions includes quantum plasma dynamic, nonlocal screening, plasmons, polaritons, linear electromagnetic response, excitons, polarons, phonons, magnetic Landau quantization, van der Waals interactions, chemisorption, etc. Considerable attention is also given to low-dimensional and nanostructured systems, including quantum wells, wires, dots and superlattices, as well as materials having exceptional conduction properties such as superconductors, superfluids and graphene.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії