Добірка наукової літератури з теми "Non-asymptotic analysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Non-asymptotic analysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Non-asymptotic analysis"

1

Kaslovsky, Daniel N., and François G. Meyer. "Non-asymptotic analysis of tangent space perturbation." Information and Inference: A Journal of the IMA 3, no. 2 (June 1, 2014): 134–87. http://dx.doi.org/10.1093/imaiai/iau004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Logemann, H., and E. P. Ryan. "Non-autonomous systems: asymptotic behaviour and weak invariance principles." Journal of Differential Equations 189, no. 2 (April 2003): 440–60. http://dx.doi.org/10.1016/s0022-0396(02)00144-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Djafari Rouhani, Behzad. "Asymptotic properties of some non-autonomous systems in Banach spaces." Journal of Differential Equations 229, no. 2 (October 2006): 412–25. http://dx.doi.org/10.1016/j.jde.2006.07.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pileckas, Konstantin, and Alicija Raciene. "Non-stationary Navier–Stokes equations in 2D power cusp domain." Advances in Nonlinear Analysis 10, no. 1 (January 1, 2021): 1011–38. http://dx.doi.org/10.1515/anona-2020-0165.

Повний текст джерела
Анотація:
Abstract The initial boundary value problem for the non-stationary Navier-Stokes equations is studied in 2D bounded domain with a power cusp singular point O on the boundary. We consider the case where the boundary value has a nonzero flux over the boundary. In this case there is a source/sink in O and the solution necessary has infinite energy integral. In the first part of the paper the formal asymptotic expansion of the solution near the singular point was constructed. In this, second part, the constructed asymptotic decomposition is justified, i.e., existence of the solution which is represented as the sum of the constructed asymptotic expansion and a term with finite energy norm is proved. Moreover, it is proved that the solution represented in this form is unique.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

da Silva, C. R. C., and B. Choi. "Non-asymptotic performance analysis of single-cycle detectors." IEEE Transactions on Wireless Communications 7, no. 10 (October 2008): 3732–37. http://dx.doi.org/10.1109/t-wc.2008.070639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shah, Devavrat, Qiaomin Xie, and Zhi Xu. "Non-Asymptotic Analysis of Monte Carlo Tree Search." ACM SIGMETRICS Performance Evaluation Review 48, no. 1 (July 8, 2020): 31–32. http://dx.doi.org/10.1145/3410048.3410066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zuo, Yijun. "Non-asymptotic robustness analysis of regression depth median." Journal of Multivariate Analysis 199 (January 2024): 105247. http://dx.doi.org/10.1016/j.jmva.2023.105247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schlier, Ch. "Discrepancy behaviour in the non-asymptotic regime." Applied Numerical Mathematics 50, no. 2 (August 2004): 227–38. http://dx.doi.org/10.1016/j.apnum.2003.12.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Onitsuka, Masakazu. "Non-uniform asymptotic stability for the damped linear oscillator." Nonlinear Analysis: Theory, Methods & Applications 72, no. 3-4 (February 2010): 1266–74. http://dx.doi.org/10.1016/j.na.2009.08.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Majd, Abderrazzak. "On the Asymptotic Analys of a Non-Symmetric Bar." ESAIM: Mathematical Modelling and Numerical Analysis 34, no. 5 (September 2000): 1069–85. http://dx.doi.org/10.1051/m2an:2000116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Non-asymptotic analysis"

1

Ottobre, Michela. "Asymptotic analysis for Markovian models in non-equilibrium statistical mechanics." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9797.

Повний текст джерела
Анотація:
This thesis is mainly concerned with the problem of exponential convergence to equilibrium for open classical systems. We consider a model of a small Hamiltonian system coupled to a heat reservoir, which is described by the Generalized Langevin Equation (GLE) and we focus on a class of Markovian approximations to the GLE. The generator of these Markovian dynamics is an hypoelliptic non-selfadjoint operator. We look at the problem of exponential convergence to equilibrium by using and comparing three different approaches: classic ergodic theory, hypocoercivity theory and semiclassical analysis (singular space theory). In particular, we describe a technique to easily determine the spectrum of quadratic hypoelliptic operators (which are in general non-selfadjoint) and hence obtain the exact rate of convergence to equilibrium.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vikman, Noa, and Gustav Romare. "Models of the Universe : An analysis of the asymptotic behaviour of non-linear dynamical systems." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297891.

Повний текст джерела
Анотація:
In this thesis we present some relevant theory, and then we rigorously investigate the existence intervals and the asymptotic behaviors of three cosmological models. The first model we investigate is based on the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which is consistent with the cosmological principle. This is a common assumption which asserts that the universe is spatially homogeneous and isotropic. The second and third models are of Bianchi type I and Bianchi type II respectively, which are both anisotropic, but spatially homogeneous models. For all models we find that the existence interval is (0,∞), meaning that they all predict an origin of the universe for some past time, while guaranteeing the existence of the universe for all future times. Furthermore we prove that in all models the universe expands exponentially for times far in the future and that the non-isotropic solutions tend towards isotropic solutions forward in time. Differences were found in the asymptotic behavior backward in time, as the FLRW-model was shown to behave like the square root for times close to t=0, while the anisotropy in the Bianchi type I and Bianchi type II models became unbounded close to t=0. It was found that there were no differences in the asymptotic behavior between the two anisotropic models. Finally we investigated some interesting aspects specific for each model. For instance the behaviour of light-like curves were analysed in the FLRW-solutions and vacuum solutions were investigated in the Bianchi type I and Bianchi type II models.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

King, Alan Jonathan. "Asymptotic behaviour of solutions in stochastic optimization : nonsmooth analysis and the derivation of non-normal limit distributions /." Thesis, Connect to this title online; UW restricted, 1986. http://hdl.handle.net/1773/6778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xia, Xiaoyue. "New asymptotic methods for the global analysis of ordinary differential equations and for non-selfadjoint spectral problems." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437062908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rydén, Patrik. "Statistical analysis and simulation methods related to load-sharing models." Doctoral thesis, Umeå universitet, Matematisk statistik, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46772.

Повний текст джерела
Анотація:
We consider the problem of estimating the reliability of bundles constructed of several fibres, given a particular kind of censored data. The bundles consist of several fibres which have their own independent identically dis-tributed failure stresses (i.e.the forces that destroy the fibres). The force applied to a bundle is distributed between the fibres in the bundle, accord-ing to a load-sharing model. A bundle with these properties is an example of a load-sharing system. Ropes constructed of twisted threads, compos-ite materials constructed of parallel carbon fibres, and suspension cables constructed of steel wires are all examples of load-sharing systems. In par-ticular, we consider bundles where load-sharing is described by either the Equal load-sharing model or the more general Local load-sharing model. In order to estimate the cumulative distribution function of failure stresses of bundles, we need some observed data. This data is obtained either by testing bundles or by testing individual fibres. In this thesis, we develop several theoretical testing methods for both fibres and bundles, and related methods of statistical inference. Non-parametric and parametric estimators of the cumulative distribu-tion functions of failure stresses of fibres and bundles are obtained from different kinds of observed data. It is proved that most of these estimators are consistent, and that some are strongly consistent estimators. We show that resampling, in this case random sampling with replacement from sta-tistically independent portions of data, can be used to assess the accuracy of these estimators. Several numerical examples illustrate the behavior of the obtained estimators. These examples suggest that the obtained estimators usually perform well when the number of observations is moderate.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Franck, Emmanuel. "Construction et analyse numérique de schéma asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00735956.

Повний текст джерела
Анотація:
L'équation de transport, dans le régime fortement collisionnel admet une limite asymptotique de diffusion. Les discrétisations angulaires comme la méthode des ordonnées discrètes Sn où le développement tronqué en harmonique sphérique Pn préservent aussi cette limite de diffusion. Par conséquent, il est intéressant de construire pour de tels systèmes des méthodes de volumes finis sur maillages non structurés qui préservent cette limite de diffusion pour des grilles grossières. En effet, ces modèles peuvent être couplés avec des codes hydrodynamiques Lagrangiens qui génèrent des maillages très tordus. Pour commencer, on considère la discrétisation angulaire la plus simple de l'équation de transport appelée le modèle P1. Après une rapide introduction sur les méthodes 1D, on commence par modifier le schéma acoustique en dimension deux avec la méthode de Jin-Levermore. Le schéma ainsi obtenu n'est pas convergent dans le régime de diffusion car le schéma de diffusion valide n'est pas consistant sur maillages non structurés. Pour résoudre ce problème, on a proposé de nouvelles méthodes valides sur maillages non structurés. Ces méthodes sont basées sur un autre formalisme des méthodes de volumes finis ou les flux sont localisés aux interfaces, couplé avec la méthode de Jin-Levermore. On obtient deux schémas convergents qui dérivent sur les schémas asymptotic preserving 1D. Le schéma limite de diffusion obtenu est un nouveau schéma pour lequel on a donné une preuve de convergence. Dans un second temps, on a proposé une extension du travail réalisé pour le modèle P1 dans le cadre des discrétisations angulaires d'ordres élevés. Pour obtenir une discrétisation asymptotic preserving pour ces modèles on a utilisé une décomposition entre la discrétisation angulaire de premier ordre et les discrétisations angulaires d'ordres supérieurs. Enfin on a étudié la discrétisation du problème d'absorption/émission présent en transfert radiatif ainsi que la discrétisation du modèle non linéaire M1. L'approximation du modèle M1 est basé sur un couplage entre un schéma Lagrange+projection pour une reformulation du modèle M1 et la méthode de Jin-Levermore. La méthode numérique obtenue préserve la limite asymptotique, l'inégalité d'entropie et le principe du maximum associé au système sur maillages non structurés.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Battista, Antonio. "An analysis of nonlinear thin structures." Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS017.

Повний текст джерела
Анотація:
Le thème principal de cette thèse est l'étude du comportement mécanique de structures minces élancées dans le domaine non-linéaire. Ce travail de thèse est présenté sous la forme d’une collection d’articles publiés au cours du doctorat et est divisé en deux parties. La première partie concerne l’analyse de modèles non-linéaires de poutres inextensibles et extensibles, généralisant sur différents aspects les modèles de poutres d’Euler et de Timoshenko. Une étude théorique de l’existence et de l’unicité de solutions est complétée de simulations numériques mettant en évidence l’existence de solutions multiples avec l’augmentation de la force appliquée. Une étude numérique de la multiplicité de solutions d’un modèle de poutre extensible en grands déplacements est également effectuée. La deuxième partie concerne la justification formelle par méthodes asymptotiques d’un modèle de membrane original présentant une multiplicité de solutions pour des chargements particuliers, pouvant modéliser les plissements de certaines structures très minces sollicitées en cisaillement
The main theme of this thesis is the study of the mechanical behavior of thin slender structures in the nonlinear domain. This thesis work is presented in the form of a collection of articles published during the Ph.D. and is divided into two parts. The first part deals with the analysis of nonlinear models of inextensible and extensible beams, generalizing on different aspects the beam models of Euler and Timoshenko. A theoretical study of the existence and uniqueness of solutions is completed by numerical simulations highlighting the existence of multiple solutions with the increase of the applied force. A numerical study of the multiplicity of solutions of an extensible beam model in large displacements is also carried out. The second part concerns the formal justification by asymptotic methods of an original membrane model presenting a multiplicity of solutions for particular loads, able to model the wrinkling of some very thin structures with a shear stress applied
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Djemal, Fathi. "Analyse et optimisation des batteurs dynamiques non linéaires." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2015. http://www.theses.fr/2015ECAP0007/document.

Повний текст джерела
Анотація:
Les vibrations qui sont en général source de dérangement, d’usure et même destruction des machines et structures mécaniques doivent être contrôlées ou éliminées. Pour cette raison, la lutte contre les vibrations est devenue depuis des années un enjeu majeur pour les chercheurs de laboratoire et de développement dans l’industrie afin de développer des solutions efficaces contre ces problèmes. De nombreuses technologies ont donc été développées. Parmi ces technologies, les absorbeurs de vibration non linéaires présentent des performances importantes dans l’atténuation de vibration sur une large bande de fréquences. C’est dans ce contexte que cette thèse se focalise sur l’analyse et l’optimisation des absorbeurs de vibration non linéaires. L’objectif de cette thèse est d’analyser le comportement dynamique non linéaire des systèmes présentant des absorbeurs de vibration non linéaires. Pour cela, un modèle dynamique d’un système à deux degrés de liberté est développé mettant en équations le comportement non linéaire. La résolution des équations de mouvement est faite par la Méthode Asymptotique Numérique (MAN). La performance de cette méthode est montrée via une comparaison avec la méthode de Newton-Raphson. L’analyse des modes non linéaires du système ayant une non-linéarité cubique est faite par une formulation explicite des Fonctions de Réponse en Fréquence non linéaires (FRFs) et les Modes Normaux Non linéaires (MNNs). Un démonstrateur sur la base d’un système simple à deux degré de liberté est mis en place afin de recaler les modèles envisagés sur la base des résultats expérimentaux trouvés
Vibrations are usually undesired phenomena as they may cause discomfort, disturbance, damage, and sometimes destruction of machines and structures. It must be reduced or controlled or eliminated. For this reason, the vibrations attenuation became a major issue for scientists and researchers in order to develop effective solutions for these problems. Many technologies have been developed. Among these technologies, the nonlinear vibration absorbers have significant performance in the vibration attenuation over a wide frequency band. In this context, this thesis focuses on the analysis and optimization of nonlinear vibration absorbers. The objective of the thesis is to analyze the nonlinear dynamic behavior of systems with nonlinear vibration absorbers. For this, a dynamic model of a two degrees of freedom system is developed. The Asymptotic Numerical Method (ANM) is used to solve the nonlinear equations of motion. The performance of this method is shown via a comparison with the Newton-Raphson method. The nonlinear modal analysis system with cubic nonlinearity is made by an explicit formulation of the nonlinear Frequency Response Functions (FRFs) and Nonlinear Normal Modes (MNNs). An experimental study is performed to validate the numerical results
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Petrovienė, Jovita. "Netiesiškai normalizuotų minimumų asimptotiniai tyrimai." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090907_130724-23133.

Повний текст джерела
Анотація:
Šiame darbe atliekami stochastinių minimumų asimptotiniai tyrimai. Įrodomos minimumų ribinės teoremos tuo atveju, kai tiesinis normalizavimas neduoda neišsigimusių ribinių skirstinių, tokiu atveju taikau netiesinį minimumų normalizavimą. Konkretaus skirstinio atveju randamos netiesinės normalizavimo funkcijos, kurių pagalba yra gaunami minimumų klasikiniai ribiniai skirstiniai. Įrodoma Perkėlimo teorema netiesiniam normalizavimui. Darbo tikslai: • ištirti netiesinio normalizavimo reikalingumą; • išanalizuoti netiesinio normalizavimo galimybes minimumų schemoje. Darbo uždaviniai: • parinkti netiesinio normalizavimo funkciją konkretaus skirstinio atveju; • gauti ribinius klasikinius skirstinius, kai minimumai normalizuojami netiesiškai; • įvertinti konvergavimo greitį ribinėse teoremose; • atlikti aproksimavimo paklaidų kompiuterinę analizę.
This paper is the asymptotic analysis of stochastic minima. Proofs of minima limit theorems are provided for cases, when linear normalization does not give non-degenerate limit distributions. In this cases, non-linear minima normalization is used. For a specific distribution, non-linear normalization functions are calculated, which are then used to get classic limit distributions for minima. Objectives: • Examine the necessity of non-linear normalization; • Analyze the possibilities for non-linear normalization in minimum pattern. Tasks: • Choose non-linear normalization function for a specific distribution; • Get classic limit distributions, where minima are normalized non-linearly; • Investigate the rate of convergence within the limit theorems; • Perform computer-based analysis of approximation errors.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shikongo, Albert. "Numerical Treatment of Non-Linear singular pertubation problems." Thesis, Online access, 2007. http://etd.uwc.ac.za/usrfiles/modules/etd/docs/etd_gen8Srv25Nme4_3831_1257936459.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Non-asymptotic analysis"

1

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. Non-Asymptotic Analysis of Approximations for Multivariate Statistics. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lal, Puri Madan, and Ghosh Subir 1950-, eds. Asymptotics, nonparametrics, and time series: A tribute to Madan Lal Puri. New York: Marcel Dekker, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

I, Kostrikin A., and Shafarevich I. R. 1923-, eds. Algebra VI: Combinatorialand asymptotic methods of algebra : nonassociative structures. Berlin: Springer, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sequeira, A., H. Beirão da Veiga, and V. A. Solonnikov. Recent advances in partial differential equations and applications: International conference in honor of Hugo Beirao de Veiga's 70th birthday, February 17-214, 2014, Levico Terme (Trento), Italy. Edited by Rădulescu, Vicenţiu D., 1958- editor. Providence, Rhode Island: American Mathematical Society, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. Non-Asymptotic Analysis of Approximations for Multivariate Statistics. Springer, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups. Springer London, Limited, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8114-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Berg, Imme van den. Nonstandard Asymptotic Analysis. Springer, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berg, Imme van den. Nonstandard Asymptotic Analysis. Springer London, Limited, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Algebra VI: Combinatorial and Asymptotic Methods of Algebra: Non-Associative Structures (Encyclopaedia of Mathematical Sciences). Springer, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Non-asymptotic analysis"

1

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Non-Asymptotic Bounds." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 1–4. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "General Approach to Constructing Non-Asymptotic Bounds." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 117–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Power-Divergence Statistics." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 109–16. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Scale-Mixed Distributions." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 5–21. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "MANOVA Test Statistics." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 23–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Linear and Quadratic Discriminant Functions." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 35–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Cornish–Fisher Expansions." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 49–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Likelihood Ratio Tests with Box-Type Moments." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 61–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Bootstrap Confidence Sets." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 73–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fujikoshi, Yasunori, and Vladimir V. Ulyanov. "Gaussian Comparison and Anti-concentration." In Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 81–91. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2616-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Non-asymptotic analysis"

1

Pandora, Tsiliki, and Papadopoulos Basil. "Pattern recognition with non asymptotic fuzzy estimators." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nistor, Maricica, Rui A. Costa, Tiago T. V. Vinhoza, and Joao Barros. "Non-Asymptotic Analysis of Network Coding Delay." In 2010 IEEE International Symposium on Network Coding (NetCod). IEEE, 2010. http://dx.doi.org/10.1109/netcod.2010.5487665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mariona, Alexander, Homa Esfahanizadeh, Rafael G. L. D’Oliveira, and Muriel Médard. "A Non-Asymptotic Analysis of Mismatched Guesswork." In 2023 IEEE International Symposium on Information Theory (ISIT). IEEE, 2023. http://dx.doi.org/10.1109/isit54713.2023.10206583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rao, Milind, Alon Kipnis, Tara Javidi, Yonina C. Eldar, and Andrea Goldsmith. "System identification from partial samples: Non-asymptotic analysis." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fattahi, Salar, and Somayeh Sojoudi. "Non-Asymptotic Analysis of Block-Regularized Regression Problem." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8618718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shah, Devavrat, Qiaomin Xie, and Zhi Xu. "Non-Asymptotic Analysis of Monte Carlo Tree Search." In SIGMETRICS '20: ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3393691.3394202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bachmat, Eitan, and Josu Doncel. "Non-Asymptotic Performance Analysis of Size-Based Routing Policies." In 2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, 2020. http://dx.doi.org/10.1109/mascots50786.2020.9285943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kartik, Dhruva, Ashutosh Nayyar, and Urbashi Mitra. "Testing for Anomalies: Active Strategies and Non-asymptotic Analysis." In 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020. http://dx.doi.org/10.1109/isit44484.2020.9174399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Poulimenos, A. G., and S. D. Fassois. "Asymptotic analysis of non-stationary functional series TAR estimators." In 2007 Mediterranean Conference on Control & Automation. IEEE, 2007. http://dx.doi.org/10.1109/med.2007.4433845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bhadoria, Shravan K., and Ramesh G. Burela. "Asymptotic non-linear analysis of Fung anisotropic hyperelastic plate." In AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-2228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Non-asymptotic analysis"

1

Osipov, Andrei. Non-asymptotic Analysis of Bandlimited Functions. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada555158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії