Добірка наукової літератури з теми "Nitrure de scandium aluminium (ScAlN)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nitrure de scandium aluminium (ScAlN)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nitrure de scandium aluminium (ScAlN)"

1

Krey, Maximilian, Bernd Hähnlein, Katja Tonisch, Stefan Krischok, and Hannes Töpfer. "Automated Parameter Extraction Of ScAlN MEMS Devices Using An Extended Euler–Bernoulli Beam Theory." Sensors 20, no. 4 (February 13, 2020): 1001. http://dx.doi.org/10.3390/s20041001.

Повний текст джерела
Анотація:
Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young’s modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler–Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young‘s modulus of the magnetostrictive layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hähnlein, Bernd, Tim Hofmann, Katja Tonisch, Jörg Pezoldt, Jaroslav Kovac, and Stefan Krischok. "Structural Analysis of Sputtered Sc(x)Al(1-x)N Layers for Sensor Applications." Key Engineering Materials 865 (September 2020): 13–18. http://dx.doi.org/10.4028/www.scientific.net/kem.865.13.

Повний текст джерела
Анотація:
Scandium aluminum nitride (ScxAl1-xN) is a promising material for sensor applications as it exhibits enhanced piezoelectric properties compared to pristine AlN while maintaining other advantageous properties like high thermal stability. Magnetoelectric sensors in particular are used to detect magnetic fields which leads to special requirements regarding the investigated ScAlN in order to achieve high sensor sensitivities. Co-sputtered ScAlN layers are investigated in this work using XRD, XPS, FTIR and Raman spectroscopy for scandium concentrations from 0 to 34 %. The impact of Sc incorporation regarding residual biaxial strain and bond softening is discussed on basis of the experimental results. The activity of the B1 and E2 modes found in the FTIR measurements is of special interest as the presumably oxygen related excitation is expected to influence the piezoelectric properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wei, Min, Yan Liu, Yuanhang Qu, Xiyu Gu, Yilin Wang, Wenjuan Liu, Yao Cai, Shishang Guo, and Chengliang Sun. "Development of Temperature Sensor Based on AlN/ScAlN SAW Resonators." Electronics 12, no. 18 (September 12, 2023): 3863. http://dx.doi.org/10.3390/electronics12183863.

Повний текст джерела
Анотація:
Temperature monitoring in extreme environments presents new challenges for MEMS sensors. Since aluminum nitride (AlN)/scandium aluminum nitride (ScAlN)-based surface acoustic wave (SAW) devices have a high Q-value, good temperature drift characteristics, and the ability to be compatible with CMOS, they have become some of the preferred devices for wireless passive temperature measurement. This paper presents the development of AlN/ScAlN SAW-based temperature sensors. Three methods were used to characterize the temperature characteristics of a thin-film SAW resonator, including direct measurement by GSG probe station, and indirect measurement by oscillation circuit and antenna. The temperature characteristics of the three methods in the range of 30–100 °C were studied. The experimental results show that the sensitivities obtained with the three schemes were −28.9 ppm/K, −33.6 ppm/K, and −29.3 ppm/K. The temperature sensor using the direct measurement method had the best linearity, with a value of 0.0019%, and highest accuracy at ±0.70 °C. Although there were differences in performance, the characteristics of the three SAW temperature sensors make them suitable for sensing in various complex environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

N. I .M. Nor, N. Khalid, H. Aris, M. S. Mispan, and N. Aiman Syahmi. "Analysis of Different Piezoelectric Materials on the Film Bulk Acoustic Wave Resonator." International Journal of Nanoelectronics and Materials (IJNeaM) 16, DECEMBER (December 26, 2023): 121–30. http://dx.doi.org/10.58915/ijneam.v16idecember.398.

Повний текст джерела
Анотація:
The performance of film bulk acoustic wave resonators (FBAR) is greatly dependent on the choice of piezoelectric materials. Different piezoelectric materials have distinct properties that can impact the performance of FBAR. Hence, this work presents the analysis of three different piezoelectric materials which are aluminum nitride (AlN), scandium aluminum nitride (ScAlN) and zinc oxide (ZnO) on the performance of FBARs working at resonance frequencies of 6 GHz until 10 GHz. The one-dimensional (1-D) modelling is implemented to characterize the effects of these materials on the quality (Q) factor, electromechanical coupling coefficient (k2eff) and bandwidth (BW). It is determined that employing ScAlN in FBAR results in the highest Q factor, ranges from 628 to 1047 while maintaining a relatively compact area (25 µm × 25 µm) and thickness (430 nm to 720 nm). However, ScAlN yields the narrowest BW, measuring 0.11 GHz at 6 GHz, as opposed to AlN and ZnO, which exhibit broader bandwidths of 0.16 GHz and 0.23 GHz, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stoeckel, Chris, Katja Meinel, Marcel Melzer, Agnė Žukauskaitė, Sven Zimmermann, Roman Forke, Karla Hiller, and Harald Kuhn. "Static High Voltage Actuation of Piezoelectric AlN and AlScN Based Scanning Micromirrors." Micromachines 13, no. 4 (April 15, 2022): 625. http://dx.doi.org/10.3390/mi13040625.

Повний текст джерела
Анотація:
Piezoelectric micromirrors with aluminum nitride (AlN) and aluminum scandium nitride (Al0.68Sc0.32N) are presented and compared regarding their static deflection. Two chip designs with 2 × 3 mm2 (Design 1) and 4 × 6 mm2 (Design 2) footprint with 600 nm AlN or 2000 nm Al0.68Sc0.32N as piezoelectric transducer material are investigated. The chip with Design 1 and Al0.68Sc0.32N has a resonance frequency of 1.8 kHz and a static scan angle of 38.4° at 400 V DC was measured. Design 2 has its resonance at 2.1 kHz. The maximum static scan angle is 55.6° at 220 V DC, which is the maximum deflection measurable with the experimental setup. The static deflection per electric field is increased by a factor of 10, due to the optimization of the design and the research and development of high-performance piezoelectric transducer materials with large piezoelectric coefficient and high electrical breakthrough voltage.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Qiaozhen, Mingzhu Chen, Huiling Liu, Xiangyong Zhao, Xiaomei Qin, Feifei Wang, Yanxue Tang, Keat Hoe Yeoh, Khian-Hooi Chew, and Xiaojuan Sun. "Deposition, Characterization, and Modeling of Scandium-Doped Aluminum Nitride Thin Film for Piezoelectric Devices." Materials 14, no. 21 (October 27, 2021): 6437. http://dx.doi.org/10.3390/ma14216437.

Повний текст джерела
Анотація:
In this work, we systematically studied the deposition, characterization, and crystal structure modeling of ScAlN thin film. Measurements of the piezoelectric device’s relevant material properties, such as crystal structure, crystallographic orientation, and piezoelectric response, were performed to characterize the Sc0.29Al0.71N thin film grown using pulsed DC magnetron sputtering. Crystal structure modeling of the ScAlN thin film is proposed and validated, and the structure–property relations are discussed. The investigation results indicated that the sputtered thin film using seed layer technique had a good crystalline quality and a clear grain boundary. In addition, the effective piezoelectric coefficient d33 was up to 12.6 pC/N, and there was no wurtzite-to-rocksalt phase transition under high pressure. These good features demonstrated that the sputtered ScAlN is promising for application in high-coupling piezoelectric devices with high-pressure stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Yuchao, Bin Miao, Guanghua Wang, Hongyu Zhou, Shiqin Zhang, Yimin Hu, Junfeng Wu, Xuechao Yu, and Jiadong Li. "ScAlN Film-Based Piezoelectric Micromechanical Ultrasonic Transducers with Dual-Ring Structure for Distance Sensing." Micromachines 14, no. 3 (February 23, 2023): 516. http://dx.doi.org/10.3390/mi14030516.

Повний текст джерела
Анотація:
Piezoelectric micromechanical ultrasonic transducers (pMUTs) are new types of distance sensors with great potential for applications in automotive, unmanned aerial vehicle, robotics, and smart homes. However, previously reported pMUTs are limited by a short sensing distance due to lower output sound pressure. In this work, a pMUT with a special dual-ring structure based on scandium-doped aluminum nitride (ScAlN) is proposed. The combination of a dual-ring structure with pinned boundary conditions and a high piezoelectric performance ScAlN film allows the pMUT to achieve a large dynamic displacement of 2.87 μm/V and a high electromechanical coupling coefficient (kt2) of 8.92%. The results of ranging experiments show that a single pMUT achieves a distance sensing of 6 m at a resonant frequency of 91 kHz, the farthest distance sensing registered to date. This pMUT provides surprisingly fertile ground for various distance sensing applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Minghua, Huamao Lin, Kan Hu, and Yao Zhu. "Oxide overlayer formation on sputtered ScAlN film exposed to air." Applied Physics Letters 121, no. 11 (September 12, 2022): 111602. http://dx.doi.org/10.1063/5.0106717.

Повний текст джерела
Анотація:
There has been much interest in developing scandium doped aluminum nitride (ScAlN) thin films for use in electronic devices, due to their excellent piezoMEMS response, large spontaneous polarization, and the capability for CMOS-compatible integration. As with the undoped AlN film, the formation of an oxide overlayer on the air-exposed ScAlN film can modulate its surface structure and the electrical properties. In this study, we investigate the effects of surface oxidation on a ScAlN film by characterizing the film microstructure and the elemental chemical states. We found that amorphous phase and small crystallites co-exist in the oxide overlayer, which is remarkably different from the columnar (0002) crystalline texture in the bulk ScAlN film. X-ray photoelectron spectroscopy core-level analyses confirm the formation of Al–O and Sc–O bonds. Moreover, the valence band maximum of the oxide overlayer shifts toward a higher binding energy, indicating a high energy barrier at the ScAlN/metal interface. Our results suggest that ScAlN surface oxidation is a chemical reaction-driven and self-limited process.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ji, Meilin, Haolin Yang, Yongxin Zhou, Xueying Xiu, Haochen Lv, and Songsong Zhang. "Bimorph Dual-Electrode ScAlN PMUT with Two Terminal Connections." Micromachines 13, no. 12 (December 19, 2022): 2260. http://dx.doi.org/10.3390/mi13122260.

Повний текст джерела
Анотація:
This paper presents a novel bimorph Piezoelectric Micromachined Ultrasonic Transducer (PMUT) fabricated with 8-inch standard CMOS-compatible processes. The bimorph structure consists of two layers of 20% scandium-doped aluminum nitride (Sc0.2Al0.8N) thin films, which are sandwiched among three molybdenum (Mo) layers. All three Mo layers are segmented to form the outer ring and inner plate electrodes. Both top and bottom electrodes on the outer ring are electrically linked to the center inner plate electrodes. Likewise, the top and bottom center plate electrodes are electrically connected to the outer ring in the same fashion. This electrical configuration maximizes the effective area of the given PMUT design and improves efficiency during the electromechanical coupling process. In addition, the proposed bimorph structure further simplifies the device’s electrical layout with only two-terminal connections as reported in many conventional unimorph PMUTs. The mechanical and acoustic measurements are conducted to verify the device’s performance improvement. The dynamic mechanical displacement and acoustic output under a low driving voltage (1 Vpp) are more than twice that reported from conventional unimorph devices with a similar resonant frequency. Moreover, the pulse-echo experiments indicate an improved receiving voltage of 10 mV in comparison with the unimorph counterpart (4.8 mV). The validation of device advancement in the electromechanical coupling effect by using highly doped ScAlN thin film, the realization of the proposed bimorph PMUT on an 8-inch wafer paves the path to production of next generation, high-performance piezoelectric MEMS.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Xiaonan, Qiaozhen Zhang, Mingzhu Chen, Yaqi Liu, Jianqiu Zhu, Jiye Yang, Feifei Wang, Yanxue Tang, and Xiangyong Zhao. "Multiphysics Modeling and Analysis of Sc-Doped AlN Thin Film Based Piezoelectric Micromachined Ultrasonic Transducer by Finite Element Method." Micromachines 14, no. 10 (October 18, 2023): 1942. http://dx.doi.org/10.3390/mi14101942.

Повний текст джерела
Анотація:
This paper presents a Piezoelectric micromechanical ultrasonic transducer (PMUT) based on a Pt/ScAlN/Mo/SiO2/Si/SiO2/Si multilayer structure with a circular suspension film of scandium doped aluminum nitride (ScAlN). Multiphysics modeling using the finite element method and analysis of the effect of different Sc doping concentrations on the resonant frequency, the effective electromechanical coupling coefficient (keff2) and the station sensitivity of the PMUT cell are performed. The calculation results show that the resonant frequency of the ScAlN-based PMUT can be above 20 MHz and its keff2 monotonically rise with the increasing doping concentrations in ScAlN. In comparison to the pure AlN thin film-based PMUT, the static receiving sensitivity of the PMUT based on ScAlN thin film with 35% Sc doping concentration is up to 1.61 mV/kPa. Meanwhile, the static transmitting sensitivity of the PMUT is improved by 152.95 pm/V. Furthermore, the relative pulse-echo sensitivity level of the 2 × 2 PMUT array based on the Sc doping concentration of 35% AlN film is improved by 16 dB compared with that of the cell with the same Sc concentration. The investigation results demonstrate that the performance of PMUT on the proposed structure can be tunable and enhanced by a reasonable choice of the Sc doping concentration in ScAlN films and structure optimization, which provides important guidelines for the design of PMUT for practical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії