Статті в журналах з теми "Nitrides of the III group"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nitrides of the III group.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nitrides of the III group".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Christen, Jürgen, and Bernard Gil. "Group III Nitrides." physica status solidi (c) 11, no. 2 (February 2014): 238. http://dx.doi.org/10.1002/pssc.201470041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Henini, M. "Properties group III nitrides." III-Vs Review 8, no. 2 (April 1995): 67. http://dx.doi.org/10.1016/0961-1290(95)80114-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ploog, Klaus H., and Oliver Brandt. "Doping of group III nitrides." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, no. 3 (May 1998): 1609–14. http://dx.doi.org/10.1116/1.581128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Szweda, Roy. "Properties of group III nitrides." III-Vs Review 10, no. 4 (July 1997): 54. http://dx.doi.org/10.1016/0961-1290(97)90252-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Henini, M. "Properties of Group III nitrides." Microelectronics Journal 26, no. 2-3 (March 1995): xxix—xxx. http://dx.doi.org/10.1016/0026-2692(95)90023-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Costales, Aurora, Miguel A. Blanco, Ángel Martín Pendás, Anil K. Kandalam, and Ravindra Pandey. "Chemical Bonding in Group III Nitrides." Journal of the American Chemical Society 124, no. 15 (April 2002): 4116–23. http://dx.doi.org/10.1021/ja017380o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sussek, Harald, Oliver Stark, Anjana Devi, Hans Pritzkow, and Roland A. Fischer. "Precursor chemistry of Group III nitrides." Journal of Organometallic Chemistry 602, no. 1-2 (May 2000): 29–36. http://dx.doi.org/10.1016/s0022-328x(00)00114-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Liangbiao, Yanxia Pan, Qianli Shen, Junhao Zhang, Keyan Bao, Zhengsong Lou, Dejian Zhao, and Quanfa Zhou. "Sulfur-assisted synthesis of indium nitride nanoplates from indium oxide." RSC Advances 6, no. 100 (2016): 98153–56. http://dx.doi.org/10.1039/c6ra22471g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chandrasekhar, D., D. J. Smith, S. Strite, M. E. Lin, and H. Morkoc. "Characterization of group Ill-nitrides by high-resolution electron microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 846–47. http://dx.doi.org/10.1017/s0424820100171961.

Повний текст джерела
Анотація:
The Group III-nitride semiconductors A1N, GaN, and InN are of interest for their potential applications in short wavelength optoelectronic devices. This interest stems from their direct wideband gapswhich range from 1.9 eV (InN), to 3.4 eV (GaN), to 6.2 eV (A1N). If high quality nitride films can besuccessfully grown, then optoelectronic devices with wavelengths ranging from the visible to the deepultraviolet region of the electromagnetic spectrum are theoretically possible. Recently, LED's basedon GaN and InGaN QW's were demonstrated. Also, their excellent thermal properties make them ideal candidates for high-temperature and high-power devices. Many problems plague nitride research, especiallythe lack of suitable substrate materials that are both lattice- and thermal-matched to the nitrides. The crystal structure of these materials is strongly influenced by the substrate and its orientation.For example, although the equilibrium crystal structure of these nitrides is wurtzite, zincblende phase can be nucleated under nonequilibrium growth conditions but only on cubic substrates. These zincblende nitrides represent new material systems with properties that differ from their wurtzite counterparts. Recently, good quality material has been produced employing metalorganic vapor phase epitaxy (MOVPE) and reactive molecular beam epitaxy (RMBE) techniques with incorporation of buffer layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gavrilenko, V. I., and R. Q. Wu. "Energy loss spectra of group III nitrides." Applied Physics Letters 77, no. 19 (November 6, 2000): 3042–44. http://dx.doi.org/10.1063/1.1323992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ambacher, O. "Growth and applications of Group III-nitrides." Journal of Physics D: Applied Physics 31, no. 20 (October 21, 1998): 2653–710. http://dx.doi.org/10.1088/0022-3727/31/20/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Winiarski, Maciej J. "Electronic Structure of Ternary Alloys of Group III and Rare Earth Nitrides." Materials 14, no. 15 (July 23, 2021): 4115. http://dx.doi.org/10.3390/ma14154115.

Повний текст джерела
Анотація:
Electronic structures of ternary alloys of group III (Al, Ga, In) and rare earth (Sc, Y, Lu) nitrides were investigated from first principles. The general gradient approximation (GGA) was employed in predictions of structural parameters, whereas electronic properties of the alloys were studied with the modified Becke–Johnson GGA approach. The evolution of structural parameters in the materials reveals a strong tendency to flattening of the wurtzite type atomic layers. The introduction of rare earth (RE) ions into Al- and In-based nitrides leads to narrowing and widening of a band gap, respectively. Al-based materials doped with Y and Lu may also exhibit a strong band gap bowing. The increase of a band gap was obtained for Ga1−xScxN alloys. Relatively small modifications of electronic structure related to a RE ion content are expected in Ga1−xYxN and Ga1−xLuxN systems. The findings presented in this work may encourage further experimental investigations of electronic structures of mixed group III and RE nitride materials because, except for Sc-doped GaN and AlN systems, these novel semiconductors were not obtained up to now.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Adesida, I., C. Youtsey, A. T. Ping, F. Khan, L. T. Romano, and G. Bulman*. "Dry and Wet Etching for Group III – Nitrides." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 38–48. http://dx.doi.org/10.1557/s1092578300002222.

Повний текст джерела
Анотація:
The group-III nitrides have become versatile semiconductors for short wavelength emitters, high temperature microwave transistors, photodetectors, and field emission tips. The processing of these materials is significant due to the unusually high bond energies that they possess. The dry and wet etching methods developed for these materials over the last few years are reviewed. High etch rates and highly anisotropic profiles obtained by inductively-coupled-plasma reactive ion etching are presented. Photoenhanced wet etching provides an alternative path to obtaining high etch rates without ion-induced damage. This method is shown to be suitable for device fabrication as well as for the estimation of dislocation densities in n-GaN. This has the potential of developing into a method for rapid evaluation of materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Averyanova, M. V., I. N. Przhevalskii, S. Yu Karpov, Yu N. Makarov, M. S. Ramm, and R. A. Talalaev. "Analysis of vaporization kinetics of group-III nitrides." Materials Science and Engineering: B 43, no. 1-3 (January 1997): 167–71. http://dx.doi.org/10.1016/s0921-5107(96)01856-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Meyer, B. K., D. M. Hofmann, and H. Alves. "Defects and defect identification in group III-nitrides." Materials Science and Engineering: B 71, no. 1-3 (February 2000): 69–76. http://dx.doi.org/10.1016/s0921-5107(99)00351-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Chow, W. W., A. Knorr, and S. W. Koch. "Theory of laser gain in group‐III nitrides." Applied Physics Letters 67, no. 6 (August 7, 1995): 754–56. http://dx.doi.org/10.1063/1.115215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kirste, Ronny, Stefan Mohn, Markus R. Wagner, Juan S. Reparaz, and Axel Hoffmann. "Phonon plasmon interaction in ternary group-III-nitrides." Applied Physics Letters 101, no. 4 (July 23, 2012): 041909. http://dx.doi.org/10.1063/1.4739415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Costales, Aurora, Miguel A. Blanco, Angel Martin Pendas, Anil K. Kandalam, and Ravindra Pandey. "ChemInform Abstract: Chemical Bonding in Group III Nitrides." ChemInform 33, no. 24 (June 8, 2010): no. http://dx.doi.org/10.1002/chin.200224002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Amano, Hiroshi, T. Takeuchi, Hiroshi Sakai, S. Yamaguchi, C. Wetzel, and Isamu Akasaki. "Heteroepitaxy of Group III Nitrides for Device Applications." Materials Science Forum 264-268 (February 1998): 1115–20. http://dx.doi.org/10.4028/www.scientific.net/msf.264-268.1115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Vogel, Dirk, Peter Krüger, and Johannes Pollmann. "Structural and electronic properties of group-III nitrides." Physical Review B 55, no. 19 (May 15, 1997): 12836–39. http://dx.doi.org/10.1103/physrevb.55.12836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zięborak-Tomaszkiewicz, Iwona, and P. Gierycz. "Calculations of thermal functions of group-III nitrides." Journal of Thermal Analysis and Calorimetry 93, no. 3 (September 2008): 693–99. http://dx.doi.org/10.1007/s10973-008-9130-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Foxon, C. T., T. S. Cheng, S. V. Novikov, D. E. Lacklison, L. C. Jenkins, D. Johnston, J. W. Orton, et al. "The growth and properties of group III nitrides." Journal of Crystal Growth 150 (May 1995): 892–96. http://dx.doi.org/10.1016/0022-0248(95)80068-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Rebane, Y. T., R. I. Gorbunov, and Y. G. Shreter. "Light scattering by dislocations in group-III nitrides." physica status solidi (a) 202, no. 15 (November 7, 2005): 2880–87. http://dx.doi.org/10.1002/pssa.200421095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Amano, H., M. Iwaya, N. Hayashi, T. Kashima, M. Katsuragawa, T. Takeuchi, C. Wetzel, and I. Akasaki. "Improvement of Crystalline Quality of Group III Nitrides on Sapphire Using Low Temperature Interlayers." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 870–77. http://dx.doi.org/10.1557/s1092578300003550.

Повний текст джерела
Анотація:
In organometallic vapor phase epitaxial growth of group III nitrides on sapphire, insertion of a low temperature interlayer is found to improve crystalline quality of AlxGa1−xN layer with x from 0 to 1. Here the effects of the low temperature deposited GaN or AlN interlayers on the structural quality of group III nitrides is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

MAHMOOD, A., L. E. SANSORES, and J. HEIRAS. "BULK MODULUS CALCULATIONS FOR GROUP-IV CARBIDES AND GROUP-III NITRIDES." Modern Physics Letters B 18, no. 24 (October 20, 2004): 1247–54. http://dx.doi.org/10.1142/s0217984904007736.

Повний текст джерела
Анотація:
Wide band gap semiconductors such as group-IV carbides ( SiC , GeC ) and group-III nitrides ( AlN , GaN and BN ) are known to be important materials for novel semiconductor applications. They also have interesting mechanical properties such as having a particularly high value for their bulk modulus and are therefore potential candidates for hard coatings. In this paper we report the theoretical calculations for the bulk modulus for zincblende and wurzite polytypes of these materials. The Density Functional and Total-energy Pseudopotential Techniques in the Generalized Gradient approximation, an ab initio quantum mechanical method, is used to obtain the theoretical structure, from which equilibrium lattice parameters and volume of the cell versus pressure may be extracted. The Murnaghan's equation of state is then used to calculate bulk modulus under elastic deformation, which is related to the hardness of a material under certain conditions. The results for bulk modulus are compared with other theoretical and experimental values reported in the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

As, Donat J., S. Potthast, J. Schörmann, S. F. Li, K. Lischka, Hiroyuki Nagasawa, and Masayuki Abe. "Molecular Beam Epitaxy of Cubic Group III-Nitrides on Free-Standing 3C-SiC Substrates." Materials Science Forum 527-529 (October 2006): 1489–92. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1489.

Повний текст джерела
Анотація:
Cubic GaN, AlxGa1-xN/GaN and InyGa1-yN/GaN multiple quantum well (MQW) layers were grown by plasma assisted molecular beam epitaxy on 200 &m thick free standing 3C-SiC substrates. The influence of the surface roughness of the 3C-SiC substrates and the influence of metal coverage during growth are discussed. Optimum growth conditions of c-III nitrides exist, when a one monolayer Ga coverage is formed at the growing surface. The improvement of the structural properties of cubic III-nitride layers and multilayers grown on 3C-SiC substrates is demonstrated by 1 μm thick c-GaN layers with a minimum x-ray rocking curve width of 16 arcmin, and by c-AlGaN/GaN and c-InGaN/GaN MQWs which showed up to five satellite peaks in X-ray diffraction, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dovidenko, K., S. Oktyabrsky, J. Narayan, and M. Razeghi. "Study of Thin films Polarity of Group III Nitrides." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 727–32. http://dx.doi.org/10.1557/s109257830000332x.

Повний текст джерела
Анотація:
Thin films of GaN grown by MOCVD on (0001) sapphire were studied by transmission electron microscopy in order to correlate the observed extended defects with crystal polarity of the films. We propose relatively simple and unambiguous method of polarity determination for wurtzite group III nitrides based on the dependence of the intensity of diffracted beams upon thickness of the specimen. Due to the dynamic scattering by polar structure, the convergent beam electron diffraction patterns lose inversion symmetry and become in fact fingerprints of the structure carrying information about crystal polarity. In this study, we have used the thinnest regions of the specimens (<15 nm) and multiple diffraction spots in high-symmetry orientation for polarity determination. The films were found to have Ga-polar surfaces, either being unipolar, or containing thin (10-30 nm in diameter) columnar inversion domains (IDs) of N-polarity. The occurrence of IDs was correlated with specific types of dislocation distribution in the films.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Rupp, T., G. Henn, M. Gross, and H. Schröder. "Laser-induced molecular beam epitaxy of group-III nitrides." Applied Physics A: Materials Science & Processing 69, no. 7 (December 1, 1999): S799—S802. http://dx.doi.org/10.1007/s003390051533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Neugebauer, J., T. Zywietz, M. Scheffler, and J. Northrup. "Theory of surfaces and interfaces of group III-nitrides." Applied Surface Science 159-160 (June 2000): 355–59. http://dx.doi.org/10.1016/s0169-4332(00)00154-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Foxon, C. T. "Molecular beam epitaxy growth kinetics for group III nitrides." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 3 (May 1996): 2346. http://dx.doi.org/10.1116/1.588857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Chisholm, J. A., D. W. Lewis, and P. D. Bristowe. "Classical simulations of the properties of group-III nitrides." Journal of Physics: Condensed Matter 11, no. 22 (January 1, 1999): L235—L239. http://dx.doi.org/10.1088/0953-8984/11/22/102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Okamoto, Yasuharu. "Theoretical study on the precursors of group-III nitrides." Journal of Crystal Growth 191, no. 3 (July 1998): 405–12. http://dx.doi.org/10.1016/s0022-0248(98)00160-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Srivastava, G. P. "The anharmonic phonon decay rate in group-III nitrides." Journal of Physics: Condensed Matter 21, no. 17 (April 1, 2009): 174205. http://dx.doi.org/10.1088/0953-8984/21/17/174205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Getman, Thomas D., and Gary W. Franklin. "Single Source Precursors to Group III (13) Metal Nitrides." Comments on Inorganic Chemistry 17, no. 2 (March 1995): 79–94. http://dx.doi.org/10.1080/02603599508035783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Meyer, B. K. "ChemInform Abstract: Magnetic Resonance Investigations on Group III Nitrides." ChemInform 30, no. 18 (June 16, 2010): no. http://dx.doi.org/10.1002/chin.199918247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

As, D. J., and K. Lischka. "Heteroepitaxy of Doped and Undoped Cubic Group III-Nitrides." physica status solidi (a) 176, no. 1 (November 1999): 475–85. http://dx.doi.org/10.1002/(sici)1521-396x(199911)176:1<475::aid-pssa475>3.0.co;2-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Foxon, C. T., C. S. Davis, S. V. Novikov, O. H. Hughes, T. S. Cheng, D. Korakakis, N. J. Jeffs, I. Grzegory, and S. Porowski. "RHEED Studies of Group III-Nitrides Grown by MBE." physica status solidi (a) 176, no. 1 (November 1999): 723–26. http://dx.doi.org/10.1002/(sici)1521-396x(199911)176:1<723::aid-pssa723>3.0.co;2-m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Talwar, D. N. "Pressure dependent phonon properties of cubic group III-nitrides." physica status solidi (b) 235, no. 2 (February 2003): 254–59. http://dx.doi.org/10.1002/pssb.200301565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Aleksandrov, S. B., D. A. Baranov, A. P. Kaidash, D. M. Krasovitskii, M. V. Pavlenko, S. I. Petrov, Yu V. Pogorel’skii, et al. "Microwave field-effect transistors based on group-III nitrides." Semiconductors 38, no. 10 (October 2004): 1235–39. http://dx.doi.org/10.1134/1.1808836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

KIM, K. W., V. A. KOCHELAP, V. N. SOKOLOV, and S. M. KOMIRENKO. "QUASI-BALLISTIC AND OVERSHOOT TRANSPORT IN GROUP III-NITRIDES." International Journal of High Speed Electronics and Systems 14, no. 01 (March 2004): 127–54. http://dx.doi.org/10.1142/s0129156404002272.

Повний текст джерела
Анотація:
We analyze steady-state and transient electron transport in the group III-nitride materials at high and ultra-high electric fields for different electron concentration regimes. At high electron concentrations where the electron distribution function assumes a shifted Maxwellian, we investigate different time-dependent transient transport regimes through the phase-plane anyalysis. Unexpected electron heating pattern is observed during the velocity overshoot process with a moderate electron temperature near the peak velocity followed by rapid increase in the deceleration period. For short nitride diodes, space-charge limited transport is considered by taking into account the self-consistent field. In this case, the overshoot is weaker and the electron heating in the region of the peak velocity is greater than that found for time-dependent problem. The transient processes are extended to sufficiently larger distances as well. When the electron concentration is small, we propose a model which accounts the main features of injected electrons in a short device with high fields. The electron velocity distribution over the device is found as a function of the field. It is demonstrated that in high fields the electrons are characterized by the extreme distribution function with the population inversion.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Gavrilenko, V. I., and R. Q. Wu. "Linear and nonlinear optical properties of group-III nitrides." Physical Review B 61, no. 4 (January 15, 2000): 2632–42. http://dx.doi.org/10.1103/physrevb.61.2632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Jancu, J. M., F. Bassani, F. Della Sala, and R. Scholz. "Transferable tight-binding parametrization for the group-III nitrides." Applied Physics Letters 81, no. 25 (December 16, 2002): 4838–40. http://dx.doi.org/10.1063/1.1529312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Graf, T., M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher. "The Mn3+/2+ acceptor level in group III nitrides." Applied Physics Letters 81, no. 27 (December 30, 2002): 5159–61. http://dx.doi.org/10.1063/1.1530374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Mackenzie, J. D., C. R. Abernathy, J. D. Stewart, and G. T. Muhr. "Growth of Group III nitrides by chemical beam epitaxy." Journal of Crystal Growth 164, no. 1-4 (July 1996): 143–48. http://dx.doi.org/10.1016/0022-0248(96)00025-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Liday, Jozef, Gernod Ecke, Tim Baumann, Peter Vogrinčič, and Juraj Breza. "Contribution to the Quantitative Analysis of Ternary Alloys of Group III-Nitrides by Auger Spectroscopy." Journal of Electrical Engineering 61, no. 1 (January 1, 2010): 62–64. http://dx.doi.org/10.2478/v10187-010-0009-4.

Повний текст джерела
Анотація:
Contribution to the Quantitative Analysis of Ternary Alloys of Group III-Nitrides by Auger SpectroscopyFor correct quantitative interpretation of Auger spectra of group III-nitrides and their alloys it is necessary to have the relative sensitivity factors of elements and the sputtering yields measured for the material under analysis. These data are not available in the literature for those materials. In this work, the quantities have been determined experimentally that are needed for reliable and precise quantitative interpretation of Auger spectra of such materials, thus of AlN, GaN and their ternary alloys AlxGa1-xN. Measurements of reference AlN and GaN samples allowed to find the elemental sensitivity factors for these nitrides, and measurements on reference samples of ternary alloys AlxGa1-xN allowed to find the ratio of the component sputtering yields, YGa/YAl. It has been confirmed that if the relative sensitivity factors are obtained from measurements of reference samples of group III-nitrides, thus of compounds, and if in the alloys of such compounds no further change of the shapes of Auger peaks occurs, the both the areas below the Auger peaks in direct spectra and the Auger peak-to-peak heights in differentiated spectra can be used for quantitative analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Nakano, Takayuki, Masateru Hamada, and Shunro Fuke. "Fabrication and Performance of Photocatalytic GaN Powders." Advanced Materials Research 222 (April 2011): 142–45. http://dx.doi.org/10.4028/www.scientific.net/amr.222.142.

Повний текст джерела
Анотація:
Group-III nitrides are expected to be used in future photocatalytic materials. InGaN is expected to be used for photocatalytic applications in the visible light region. Photocatalytic materials are used primarily in coatings and powders, and powdered photocatalysts are expected to be formed from group-III nitride powders. In this study, we produced GaN powders by nitriding Ga precursors at high temperatures under an atmosphere of NH3. The photocatalytic characteristics of the GaN powder were dependent on nitrization temperature. In addition, the crystallinity of the GaN powders and the photocatalysis were rapidly improved at nitrization temperatures over 1000°C.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Cimalla, Volker, C. C. Röhlig, V. Lebedev, Oliver Ambacher, Katja Tonisch, Florentina Niebelschütz, Klemens Brueckner, and Matthias A. Hein. "AlGaN/GaN Based Heterostructures for MEMS and NEMS Applications." Solid State Phenomena 159 (January 2010): 27–38. http://dx.doi.org/10.4028/www.scientific.net/ssp.159.27.

Повний текст джерела
Анотація:
With the increasing requirements for microelectromechanical systems (MEMS) regarding stability, miniaturization and integration, novel materials such as wide band gap semiconductors are receiving more attention. The outstanding properties of group III-nitrides offer many more possibilities for the implementation of new functionalities and a variety of technologies are available to realize group III-nitride based MEMS. In this work we demonstrate the application of these techniques for the fabrication of full-nitride MEMS. It includes a novel actuation and sensing principle based on the piezoelectric effect and employing a two-dimensional electron gas confined in AlGaN/GaN heterostructures as integrated back electrode. Furthermore, the actuation of flexural and longitudinal vibration modes in resonator bridges are demonstrated as well as their sensing properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Das, Aparna. "A Systematic Exploration of InGaN/GaN Quantum Well-Based Light Emitting Diodes on Semipolar Orientations -=SUP=-*-=/SUP=-." Оптика и спектроскопия 130, no. 3 (2022): 376. http://dx.doi.org/10.21883/os.2022.03.52165.1549-21.

Повний текст джерела
Анотація:
Light-emitting diodes (LEDs) based on group III-nitride semiconductors (GaN, AlN, and InN) are crucial elements for solid-state lighting and visible light communication applications. The most widely used growth plane for group III-nitride LEDs is the polar plane (c-plane), which is characterized by the presence of a polarization-induced internal electric field in heterostructures. It is possible to address long-standing problems in group III-nitride LEDs, by using semipolar and nonpolar orientations of GaN. In addition to the reduction in the polarization-induced internal electric field, semipolar orientations potentially offer the possibility of higher indium incorporation, which is necessary for the emission of light in the visible range. This is the preferred growth orientation for green/yellow LEDs and lasers. The important properties such as high output power, narrow emission linewidth, robust temperature dependence, large optical polarization ratio, and low-efficiency droop are demonstrated with semipolar LEDs. To harness the advantages of semipolar orientations, comprehensive studies are required. This review presents the recent progress on the development of semipolar InGaN/GaN quantum well LEDs. Semipolar InGaN LED structures on bulk GaN substrates, sapphire substrates, free-standing GaN templates, and on Silicon substrates are discussed including the bright prospects of group III-nitrides. Keywords: Group III-nitride semiconductor, semipolar, light-emitting diodes, InGaN/GaN quantum well.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Mele, Aldo, Anna Giardini, Tonia M. Di Palma, Chiara Flamini, Hideo Okabe, and Roberto Teghil. "Preparation of the group III nitride thin films AlN, GaN, InN by direct and reactive pulsed laser ablation." International Journal of Photoenergy 3, no. 3 (2001): 111–21. http://dx.doi.org/10.1155/s1110662x01000137.

Повний текст джерела
Анотація:
The methods of preparation of the group III nitrides AlN, GaN, and InN by laser ablation (i.e. laser sputtering), is here reviewed including studies on their properties. The technique, concerns direct ablation of nitride solid targets by laser to produce a plume which is collected on a substrate. Alternatively nitride deposition is obtained as a result of laser ablation of the metal and subsequent reaction in anNH3atmosphere. Optical multichannel emission spectroscopic analysis, and time of flight (TOF) mass spectrometry have been applied forin situidentification of deposition precursors in the plume moving from the target. Epitaxial AlN, GaN, and InN thin films on various substrates have been grown. X-ray diffraction, scanning electron microscopy, have been used to characterise thin films deposited by these methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Winiarski, Maciej J. "Electronic Structure of Rock Salt Alloys of Rare Earth and Group III Nitrides." Materials 13, no. 21 (November 6, 2020): 4997. http://dx.doi.org/10.3390/ma13214997.

Повний текст джерела
Анотація:
Lattice parameters and electronic properties of RE1−xAxN alloys, where RE = Sc, Y, Lu and A = Al, Ga, and In, have been derived from first principles. The materials are expected to exhibit a linear decrease in cubic lattice parameters and a tendency to a linear increase in band gaps as a function of composition. These effects are connected with a strong mismatch between ionic radii of the RE and group III elements, which leads to chemical pressure in the mixed RE and group III nitrides. The electronic structures of such systems are complex, i.e., some contributions of the d- and p-type states, coming from RE and A ions, respectively, are present in their valence band regions. The findings discussed in this work may encourage further experimental efforts of band gap engineering in RE-based nitrides via doping with group III elements.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії