Добірка наукової літератури з теми "Neuromorphic computer systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Neuromorphic computer systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Neuromorphic computer systems"
Dunham, Christopher S., Sam Lilak, Joel Hochstetter, Alon Loeffler, Ruomin Zhu, Charles Chase, Adam Z. Stieg, Zdenka Kuncic, and James K. Gimzewski. "Nanoscale neuromorphic networks and criticality: a perspective." Journal of Physics: Complexity 2, no. 4 (December 1, 2021): 042001. http://dx.doi.org/10.1088/2632-072x/ac3ad3.
Повний текст джерелаFerreira de Lima, Thomas, Alexander N. Tait, Armin Mehrabian, Mitchell A. Nahmias, Chaoran Huang, Hsuan-Tung Peng, Bicky A. Marquez, et al. "Primer on silicon neuromorphic photonic processors: architecture and compiler." Nanophotonics 9, no. 13 (August 10, 2020): 4055–73. http://dx.doi.org/10.1515/nanoph-2020-0172.
Повний текст джерелаJang, Taejin, Suhyeon Kim, Jeesoo Chang, Kyung Kyu Min, Sungmin Hwang, Kyungchul Park, Jong-Ho Lee, and Byung-Gook Park. "3D AND-Type Stacked Array for Neuromorphic Systems." Micromachines 11, no. 9 (August 31, 2020): 829. http://dx.doi.org/10.3390/mi11090829.
Повний текст джерелаLiu, Te-Yuan, Ata Mahjoubfar, Daniel Prusinski, and Luis Stevens. "Neuromorphic computing for content-based image retrieval." PLOS ONE 17, no. 4 (April 6, 2022): e0264364. http://dx.doi.org/10.1371/journal.pone.0264364.
Повний текст джерелаBhat, Pranava. "Analysis of Neuromorphic Computing Systems and its Applications in Machine Learning." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 30, 2021): 5309–12. http://dx.doi.org/10.22214/ijraset.2021.35601.
Повний текст джерелаChoi, Hyun-Seok, Yu Jeong Park, Jong-Ho Lee, and Yoon Kim. "3-D Synapse Array Architecture Based on Charge-Trap Flash Memory for Neuromorphic Application." Electronics 9, no. 1 (December 30, 2019): 57. http://dx.doi.org/10.3390/electronics9010057.
Повний текст джерелаVarshika, M. Lakshmi, Federico Corradi, and Anup Das. "Nonvolatile Memories in Spiking Neural Network Architectures: Current and Emerging Trends." Electronics 11, no. 10 (May 18, 2022): 1610. http://dx.doi.org/10.3390/electronics11101610.
Повний текст джерелаYoung, Aaron R., Mark E. Dean, James S. Plank, and Garrett S. Rose. "A Review of Spiking Neuromorphic Hardware Communication Systems." IEEE Access 7 (2019): 135606–20. http://dx.doi.org/10.1109/access.2019.2941772.
Повний текст джерелаChung, Jaeyong, Taehwan Shin, and Joon-Sung Yang. "Simplifying Deep Neural Networks for FPGA-Like Neuromorphic Systems." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, no. 11 (November 2019): 2032–42. http://dx.doi.org/10.1109/tcad.2018.2877016.
Повний текст джерелаKang, Yongshin, Joon-Sung Yang, and Jaeyong Chung. "Weight Partitioning for Dynamic Fixed-Point Neuromorphic Computing Systems." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, no. 11 (November 2019): 2167–71. http://dx.doi.org/10.1109/tcad.2018.2878167.
Повний текст джерелаДисертації з теми "Neuromorphic computer systems"
Bieszczad, Andrzej Carleton University Dissertation Engineering Systems and Computer. "Neuromorphic distributed general problem solvers." Ottawa, 1996.
Знайти повний текст джерелаNease, Stephen Howard. "Contributions to neuromorphic and reconfigurable circuits and systems." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44923.
Повний текст джерелаAzam, Md Ali. "Energy Efficient Spintronic Device for Neuromorphic Computation." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6036.
Повний текст джерелаSmith, Paul Devon. "An Analog Architecture for Auditory Feature Extraction and Recognition." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4839.
Повний текст джерелаПаржин, Юрій Володимирович. "Моделі і методи побудови архітектури і компонентів детекторних нейроморфних комп'ютерних систем". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34755.
Повний текст джерелаDissertation for the degree of Doctor of Technical Sciences in the specialty 05.13.05 – Computer systems and components. – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2018. The thesis is devoted to solving the problem of increasing the efficiency of building and using neuromorphic computer systems (NCS) as a result of developing models for constructing their components and a general architecture, as well as methods for their training based on the formalized detection principle. As a result of the analysis and classification of the architecture and components of the NCS, it is established that the connectionist paradigm for constructing artificial neural networks underlies all neural network implementations. The detector principle of constructing the architecture of the NCS and its components was substantiated and formalized, which is an alternative to the connectionist paradigm. This principle is based on the property of the binding of the elements of the input signal vector and the corresponding weighting coefficients of the NCS. On the basis of the detector principle, multi-segment threshold information models for the components of the detector NCS (DNCS): block-detectors, block-analyzers and a novelty block were developed. As a result of the developed method of counter training, these components form concepts that determine the necessary and sufficient conditions for the formation of reactions. The method of counter training of DNCS allows reducing the time of its training in solving practical problems of image recognition up to one epoch and reducing the dimension of the training sample. In addition, this method allows to solve the problem of stability-plasticity of DNCS memory and the problem of its overfitting based on self-organization of a map of block-detectors of a secondary level of information processing under the control of a novelty block. As a result of the research, a model of the network architecture of DNCS was developed, which consists of two layers of neuromorphic components of the primary and secondary levels of information processing, and which reduces the number of necessary components of the system. To substantiate the increase in the efficiency of constructing and using the NCS on the basis of the detector principle, software models were developed for automated monitoring and analysis of the external electromagnetic environment, as well as recognition of the manuscript figures of the MNIST database. The results of the study of these systems confirmed the correctness of the theoretical provisions of the dissertation and the high efficiency of the developed models and methods.
Ramakrishnan, Shubha. "A system design approach to neuromorphic classifiers." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/51718.
Повний текст джерелаПаржин, Юрій Володимирович. "Моделі і методи побудови архітектури і компонентів детекторних нейроморфних комп'ютерних систем". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34756.
Повний текст джерелаDissertation for the degree of Doctor of Technical Sciences in the specialty 05.13.05 – Computer systems and components. – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2018. The thesis is devoted to solving the problem of increasing the efficiency of building and using neuromorphic computer systems (NCS) as a result of developing models for constructing their components and a general architecture, as well as methods for their training based on the formalized detection principle. As a result of the analysis and classification of the architecture and components of the NCS, it is established that the connectionist paradigm for constructing artificial neural networks underlies all neural network implementations. The detector principle of constructing the architecture of the NCS and its components was substantiated and formalized, which is an alternative to the connectionist paradigm. This principle is based on the property of the binding of the elements of the input signal vector and the corresponding weighting coefficients of the NCS. On the basis of the detector principle, multi-segment threshold information models for the components of the detector NCS (DNCS): block-detectors, block-analyzers and a novelty block were developed. As a result of the developed method of counter training, these components form concepts that determine the necessary and sufficient conditions for the formation of reactions. The method of counter training of DNCS allows reducing the time of its training in solving practical problems of image recognition up to one epoch and reducing the dimension of the training sample. In addition, this method allows to solve the problem of stability-plasticity of DNCS memory and the problem of its overfitting based on self-organization of a map of block-detectors of a secondary level of information processing under the control of a novelty block. As a result of the research, a model of the network architecture of DNCS was developed, which consists of two layers of neuromorphic components of the primary and secondary levels of information processing, and which reduces the number of necessary components of the system. To substantiate the increase in the efficiency of constructing and using the NCS on the basis of the detector principle, software models were developed for automated monitoring and analysis of the external electromagnetic environment, as well as recognition of the manuscript figures of the MNIST database. The results of the study of these systems confirmed the correctness of the theoretical provisions of the dissertation and the high efficiency of the developed models and methods.
Tully, Philip. "Spike-Based Bayesian-Hebbian Learning in Cortical and Subcortical Microcircuits." Doctoral thesis, KTH, Beräkningsvetenskap och beräkningsteknik (CST), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205568.
Повний текст джерелаQC 20170421
Brink, Stephen Isaac. "Learning in silicon: a floating-gate based, biophysically inspired, neuromorphic hardware system with synaptic plasticity." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50143.
Повний текст джерелаRajamanikkam, Chidhambaranathan. "Understanding Security Threats of Emerging Computing Architectures and Mitigating Performance Bottlenecks of On-Chip Interconnects in Manycore NTC System." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7453.
Повний текст джерелаКниги з теми "Neuromorphic computer systems"
Landolt, Oliver. Place Coding in Analog VLSI: A Neuromorphic Approach to Computation. Boston, MA: Springer US, 1998.
Знайти повний текст джерелаLiu, Shih-Chii, Giacomo Indiveri, Rodney Douglas, Tobi Delbruck, and Adrian Whatley. Event-Based Neuromorphic Systems. Wiley & Sons, Incorporated, John, 2014.
Знайти повний текст джерелаLiu, Shih-Chii, Giacomo Indiveri, Rodney Douglas, Tobi Delbruck, and Adrian Whatley. Event-Based Neuromorphic Systems. Wiley & Sons, Incorporated, John, 2014.
Знайти повний текст джерела1952-, Smith Leslie S., Hamilton Alister, and European Workshop on Neuromorphic Systems (1st : 1997 : University of Stirling), eds. Neuromorphic systems: Engineering silicon from neurobiology. Singapore: World Scientific, 1998.
Знайти повний текст джерелаLande, Tor Sverre. Neuromorphic Systems Engineering: Neural Networks In Silicon. Springer, 2013.
Знайти повний текст джерела1950-, Lande Tor Sverre, ed. Neuromorphic systems engineering: Neural networks in silicon. Boston: Kluwer Academic, 1998.
Знайти повний текст джерелаLiu, S. C. Neuromorphic and Bio-Inspired Engineered Systems. John Wiley and Sons Ltd, 2007.
Знайти повний текст джерелаEuropean Workshop on Neurmorphic Systems 1997 (University of Stirling). Neuromorphic Systems: Engineering Silicon from Neurobiology (Progress in Neural Processing, 10). World Scientific Publishing Company, 1998.
Знайти повний текст джерелаLande, Tor Sverre. Neuromorphic Systems Engineering: Neural Networks in Silicon (The International Series in Engineering and Computer Science). Springer, 1998.
Знайти повний текст джерелаThe Making of a Neuromorphic Visual System. Springer, 2004.
Знайти повний текст джерелаЧастини книг з теми "Neuromorphic computer systems"
Carboni, Roberto. "Characterization and Modeling of Spin-Transfer Torque (STT) Magnetic Memory for Computing Applications." In Special Topics in Information Technology, 51–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62476-7_5.
Повний текст джерелаMalavena, Gerardo. "Modeling of GIDL–Assisted Erase in 3–D NAND Flash Memory Arrays and Its Employment in NOR Flash–Based Spiking Neural Networks." In Special Topics in Information Technology, 43–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_4.
Повний текст джерелаТези доповідей конференцій з теми "Neuromorphic computer systems"
Song, Chang, Beiye Liu, Chenchen Liu, Hai Li, and Yiran Chen. "Design techniques of eNVM-enabled neuromorphic computing systems." In 2016 IEEE 34th International Conference on Computer Design (ICCD). IEEE, 2016. http://dx.doi.org/10.1109/iccd.2016.7753356.
Повний текст джерелаRajasekharan, Dinesh, Amit Ranjan Trivedi, and Yogesh Singh Chauhan. "Neuromorphic Circuits on FDSOI Technology for Computer Vision Applications." In 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). IEEE, 2019. http://dx.doi.org/10.1109/vlsid.2019.00108.
Повний текст джерелаLiu, Beiye, Hai Li, Yiran Chen, Xin Li, Tingwen Huang, Qing Wu, and Mark Barnell. "Reduction and IR-drop compensations techniques for reliable neuromorphic computing systems." In 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2014. http://dx.doi.org/10.1109/iccad.2014.7001330.
Повний текст джерелаShahsavari, Mahyar, Pierre Boulet, Asadollah Shahbahrami, and Said Hamdioui. "Impact of increasing number of neurons on performance of neuromorphic architecture." In 2017 19th International Symposium on Computer Architecture and Digital Systems (CADS). IEEE, 2017. http://dx.doi.org/10.1109/cads.2017.8310732.
Повний текст джерелаMes, Johan, Ester Stienstra, Xuefei You, Sumeet S. Kumar, Amir Zjajo, Carlo Galuzzi, and Rene van Leuken. "Neuromorphic self-organizing map design for classification of bioelectric-timescale signals." In 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE, 2017. http://dx.doi.org/10.1109/samos.2017.8344618.
Повний текст джерелаZjajo, Amir, Johan Mes, Eralp Kolagasioglu, Sumeet Kumar, and Rene van Leuken. "Uncertainty in Noise-Driven Steady-State Neuromorphic Network for ECG Data Classification." In 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2018. http://dx.doi.org/10.1109/cbms.2018.00082.
Повний текст джерелаSugiarto, Indar, Delong Shang, Amit Kumar Singh, Bassem Ouni, Geoff Merrett, Bashir Al-Hashimi, and Steve Furber. "Software-defined PMC for runtime power management of a many-core neuromorphic platform." In 2017 12th International Conference on Computer Engineering and Systems (ICCES). IEEE, 2017. http://dx.doi.org/10.1109/icces.2017.8275383.
Повний текст джерелаTosson, Amr M. S., Shimeng Yu, Mohab H. Anis, and Lan Wei. "Analysis of RRAM Reliability Soft-Errors on the Performance of RRAM-Based Neuromorphic Systems." In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2017. http://dx.doi.org/10.1109/isvlsi.2017.20.
Повний текст джерелаKim, Yongtae, Yong Zhang, and Peng Li. "An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems." In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2013. http://dx.doi.org/10.1109/iccad.2013.6691108.
Повний текст джерелаSayyaparaju, Sagarvarma, Ryan Weiss, and Garrett S. Rose. "A Mixed-Mode Neuron with On-chip Tunability for Generic Use in Memristive Neuromorphic Systems." In 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2018. http://dx.doi.org/10.1109/isvlsi.2018.00086.
Повний текст джерелаЗвіти організацій з теми "Neuromorphic computer systems"
Gall, W. E. Brain-Based Devices for Neuromorphic Computer Systems. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada587348.
Повний текст джерела