Зміст
Добірка наукової літератури з теми "Neuroinflammation chronique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Neuroinflammation chronique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Neuroinflammation chronique"
Nicolas, Sarah, Joëlle Chabry, Alice Guyon, Hadi Zarif, Catherine Heurteaux, and Agnès Petit-Paitel. "L’adiponectine." médecine/sciences 34, no. 5 (May 2018): 417–23. http://dx.doi.org/10.1051/medsci/20183405014.
Повний текст джерелаVergne-Salle, Pascale, and Philippe Bertin. "Douleur chronique et neuroinflammation." Revue du Rhumatisme, May 2021. http://dx.doi.org/10.1016/j.rhum.2021.02.025.
Повний текст джерелаДисертації з теми "Neuroinflammation chronique"
Drieu, Antoine. "La neuroinflammation "invisible" dans les atteintes cérébrales aigue et chronique." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC422/document.
Повний текст джерелаInflammation is an essential process to be considered in clinical practice. We have shown during this thesis that the (neuro)inflammatory status preceding the occurrence of a cerebral pathology must necessarily be taken into account since it drastically modifies the inflammatory response following a second stimulus such as stroke. This is even more important given that 90% of strokes are associated with comorbidities such as chronic hypertension, diabetes or chronic alcohol consumption, for which inflammation is an important pathophysiological feature. We have characterized this silent inflammatory status, also called priming, in the context of chronic alcohol consumption and in mild traumatic brain injury. We have identified perivascular macrophages (PVM) as mediators of the aggravating effect of inflammatory priming on ischemic stroke. PVM appear to be potential therapeutic targets and will be the subject of future investigations. It is therefore necessary to find non-invasive imaging techniques to detect inflammatory priming. We show that autoradiography targeting TSPO reveals the inflammatory priming provoked by a single mild traumatic brain injury. We propose, in light of the results obtained during this thesis, the positron emission tomography imaging to detect the invisible neuroinflammation in acute and chronic brain diseases
Marcand-Sauvant, Julie. "Impact d'une neuroinflammation transitoire ou chronique à bas bruit sur le fonctionnement neuronal." Thesis, Bordeaux 2, 2010. http://www.theses.fr/2010BOR21755/document.
Повний текст джерелаThe fever and normal aging are two physiological processes leading to water and mineral imbalance in the body. This imbalance results in severe dehydration which can be aggravated by climatic conditions as we saw during the summer of 2003. In both cases, fever and age, the body responds by stimulating the hypothalamic-neurohypophysial system leading to increased release of vasopressin or antidiuretic hormone, which could possibly prevent dehydration criticism. However, the modalities of activation of vasopressinergic neurons (AVP) in these conditions remain unknown. The aim of the research done in this thesis was to determine the cellular and molecular mechanisms responsible for the activation of vasopressinergic neurons (AVP) during an inflammatory response and during aging. We showed ,in the first part of this work, that during an inflammatory episode (mimicked by an injection of lypopolysaccharide LPS) the activity of AVP neurons is rapidly increased and this activation is sustained for more than six hours. Moreover, this activation is not due to a potential secondary effect of LPS on plasma osmolarity and blood pressure. The early activation of AVP neurons by LPS seems to be supported by IL-6 (which mimics the effects of LPS), since activation by LPS is blocked by prior injection of anti-IL-6. In the second part of this work, we showed chronic treatment of IGF-I in old rats can restore bladder function similar to that observed in adults, presumably by acting directly on neurons AVP as the rate plasma AVP in aged rats treated with IGF-I returned to normal values, ie, equivalent to that of adult rats. This hypothesis is supported by the fact that (i) AVP neurons express the receptor for IGF-I and there is no difference in the expression of these receptors between adult and aged rats, and (ii) AVP neurons are inhibited by IGF-I. Finally, in the latter part of this work, we showed that during aging, the AVP neurons are activated, which results in increased serum AVP level and a very low rate of apelin. Similarly, astrocytes are activated and show more morphofunctional plasticity. Microglia does not seem to play a role in neuronal and astrocytic overactivation. Moreover, this neuronal overactivation is overcome by a central processing by an anti-IL-6 or a nonselective TRPV channels. However, an icv treatment by an anti-IL-6 does not affect the expression of TRPV2 in the supraoptic nucleus (SON). In general conclusion, it appears that: 1 / IL-1 is not the conductor of all inflammatory processes. Indeed, in the NSO, the activation of AVP neurons is sustained by IL-6 2 / the balance of pro-/ anti-inflammatory is significant in neuronal dysfunction. However, the critical factor in the dysfunction of AVP neurons is not the excessive production of inflammatory factors, but the insufficient production of compensatory anti-inflammatory factors. 3 / during aging, neuroinflammation responsible for the dysfunction of AVP neurons can be classified as type "chronic and low-grade" process in which (i) microglia, in alert, saw its reactivity increased tenfold during inflammatory additional solicitation; (ii) cross-talk astrocyte-neuron is stuck in a pattern of hyperactivity, similar to that observed in adulthood under conditions of sustained physiological arousal (such as in dehydration), but that would prevent the proper response network to any additional physiological demand, which is transient (as the response to acute injection of LPS or NaCl 9%) or sustained (48 h dehydration). However, literature data show the important role of microglia in other types of neuroinflammation called "high grade", and whose deleterious effects - ranging from neuronal dysfunction to neurodegeneration - are rooted in Microglial overexpression of molecules such as IL-1 or TNF . In an attempt to understand the cellular and molecular mechanisms involved in such dysfunction and to characterize the nature of neuronal dysfunction, we have developed a pharmacological model of neuroinflammation high grade by injecting IL-1 directly into the SON. Our preliminary data show that neuronal dysfunction and the cellular and molecular mechanisms behind this dysfunction differ from those observed during aging: activated microglia overexpressing many inflammatory molecules, probably at the origin of neuronal dysfunction ( absence of phasic pattern, even during osmotic stimulation), since astrocytes do not appear to be affected. The absence of phasic pattern causing the low plasma AVP reflects a disturbance of intrinsic electrophysiological properties underlying the phasic pattern (receptors, ion channels) and / or afferent excitatory (Glu, ACh, Na) or inhibitory (GABA) modulating the phasic activity
Yildirim-Balatan, Cansu. "Towards the identification of targets and markers of Parkinson’s disease-associated neuroinflammation." Thesis, Sorbonne université, 2021. http://www.theses.fr/2021SORUS442.
Повний текст джерелаParkinson’s disease (PD) is a neurodegenerative disorder characterized by α-synuclein (αSYN) aggregation. Mounting evidence indicates that αSYN aggregates are central to microglia activation and inflammatory responses though to contribute to pathogenesis. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function is of paramount importance as it might have important therapeutic impact. In this work, we investigated for the first time the inflammatory potential of patient-derived αSYN assemblies (FPD) on primary microglia and explored their capacity to polarize these cells toward a specific phenotype when combined to chronic-type and PD-relevant inflammatory cues including TNFα and prostagladine E2 (PGE2) (referred as TPFPD stimulation). Our data show that FPD hold stronger inflammatory potency than structurally different recombinant αSYN fibrils and that TPFPD-exposed microglia acquire specific functional and molecular phenotypes departing from pro-inflammatory M1 cells. In particular, they show reduced cytokine but higher glutamate release in line with up-regulated Scl7a11 gene (cystine-glutamate antiporter xCT) expression and involved in dopaminergic neuron excitotoxicity. Together, these results support structure-function relationship of αSYN polymorphs and highlight some properties of chronic-type inflammatory microglia
Ducroquet, Aude. "Impact de la consommation chronique d’éthanol sur l’ischémie cérébrale : aspect clinique et aspect expérimental chez le rat." Thesis, Lille 2, 2015. http://www.theses.fr/2015LIL2S069/document.
Повний текст джерелаIschaemic stroke is a major cause of disability and death in Europe. Ethanol is a widely consumed drug and chronic ethanol consumption is a participating factor in ischaemic stroke (Reynolds et al., 2003). Chronic and excessive ethanol consumption is associated with an increased risk of mortality and morbidity from ischaemic stroke (Zhang et al., 2014). It may increase consequences of ischaemic brain injury in animals (Zhao et al., 2010, Lemarchand et al., 2015). Oxidative stress and glutamatergic excitotoxicity may play an important role in exacerbating ischaemic damage following chronic consumption of ethanol (Zhao et al., 2010; Zhao et al., 2011). The primary aim of my thesis was to assess whether chronic excessive ethanol consumption has a deleterious effect on ischaemic brain damage both in human and in a rat model. The secondary aim was to study the post-ischaemic inflammation in the brain and in the liver at short and intermediate terms. Wistar male rats were subjected to chronic administration of ethanol (10% or 35% v/v, 5ml/kg, twice per day, 4 weeks prior operation) or water (vehicle), followed by middle cerebral artery occlusion (OACM). The effects of ethanol ingestion on infarct volume, neurologic and motor deficits were determined at 24 hours (J1) and at 7 days (J7) of reperfusion. We quantified the number of activated microglia in the ipsilateral hemisphere and additionally measured the number of neutrophils and levels of ICAM-1 and VCAM-1 mRNA in the ipsilateral hemisphere and liver. Further, we examined the steatosis by comparing oil-red coloration of J1, J7 and non-ischemic rats to assess the physiologic liver status in the 3 groups. Patients with supratentorial cerebral ischaemia were recruited within 48 hours of symptom onset. Heavy drinkers were defined by a weekly consumption of ≥300 g ethanol and severe ischaemic strokes (score≥6 according to the National Institutes of Health Stroke Scale, NIHSS). The NIHSS score was evaluated within 48 hours. We performed measurements of carbohydrate-deficient transferrin (CDT, biomarker of chronic excessive ethanol consumption) and inflammatory markers plasmatic levels. Being a heavy drinker and having a higher plasma level of neutrophils were independently associated with a higher baseline severity of the neurological deficit in patients with supratentorial ischemic stroke or transient ischemic attack within 48 hours. Excessive and chronic ethanol consumption in non-ischaemic rats conferred an increased hepatic steatosis and an inflammatory condition in the cortex, the striatum and the liver, observed as increased expression of adhesion proteins. However, neutrophil infiltration was not observed in the liver or in the brain. In the OACM model, chronic consumption of 35% ethanol worsened ischemic stroke lesions and motor deficits, compared to non-ethanol-exposed rats. Neutrophil infiltration and the mRNA levels of VCAM-1 and ICAM-1 are increased in the brain and in the liver of ischaemic rats exposed to 35% ethanol, compared to control ischaemic rats, at J1 and J7. The aggravation of neurologic and functional deficits was associated with increased post-ischaemic inflammation in both the liver and brain, as observed by microglial activation, neutrophil infiltration and leukocyte adhesion at short and intermediate terms
Van, Gijsel-Bonnello Manuel. "Neuroinflammation et perturbations métaboliques au cours du vieillissement cérébral normal et pathologique (maladie d'Alzheimer) : exploration du potentiel protecteur de la pantéthine." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5058/document.
Повний текст джерелаWe used two mouse models to explore the age-related cerebral alterations, under physiological and pathological conditions (Alzheimer’s disease), i.e. senescence accelerated SAM-P8 and transgenic 5xFAD mice.In the two models, mice showed signs of neuroinflammation with release of the major inflammatory cytokine IL-1β. Such events were undoubtedly of endogenous origin as they did not occur in the controls. It should be underlined that, since 5xFAD astrocytes were collected in newborns, their inflammatory status means that neuroinflammation is a very early step of Alzheimer’s disease pathological process, upstream of β-amyloid accumulation.Since in a complex disease such as Alzheimer’s brain insults result not from a single cause but from multiple pathological processes, we explored the protective effects of pantethine, a low-molecular-weight, multifunctional agent which has been shown to exert protective effects in several neurodegenerative diseases through multiple convergent mechanisms. In our study, pretreatment of astrocytes and treatment of mice with pantethine moderated age-related alterations. Moreover, it enhanced HIF-1α expression via the modulation of the Krebs’ cycle and proteasomal activities. In addition, a genome wide transcriptomic analysis from hippocampus samples of 5xFAD mice showed that pantethine attenuated most of gene overexpression in transgenic vs WT mice.In conclusion, we found that neuroinflammation lays at the root of Alzheimer’s disease pathological process and is also present in aging mice. Pantethine, this natural and well-tolerated compound could therefore prevent the disease development and temper the deleterious aging effects