Добірка наукової літератури з теми "NeuralRTI"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "NeuralRTI".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "NeuralRTI"
Dulecha, Tinsae G., Filippo A. Fanni, Federico Ponchio, Fabio Pellacini, and Andrea Giachetti. "Neural reflectance transformation imaging." Visual Computer 36, no. 10-12 (July 17, 2020): 2161–74. http://dx.doi.org/10.1007/s00371-020-01910-9.
Повний текст джерелаWu, Robert, Nayan Saxena, and Rohan Jain. "NeuralArTS: Structuring Neural Architecture Search with Type Theory (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 13085–86. http://dx.doi.org/10.1609/aaai.v36i11.21679.
Повний текст джерелаMichalska-Bańkowska, Anna, Anna Lis-Święty, Mirosław Bańkowski, and Agata Zielonka-Kucharzewska. "Prophylaxis and treatment of acute and chronic postherpetic neuralgia." Dermatology Review 3 (2014): 205–10. http://dx.doi.org/10.5114/dr.2014.43812.
Повний текст джерелаCapecchi, Vittorio. "Matematica e sociologia. Da Lazarsfeld alle reti neurali artificiali." SOCIOLOGIA E RICERCA SOCIALE, no. 87 (May 2009): 5–90. http://dx.doi.org/10.3280/sr2008-087001.
Повний текст джерелаAglioti, Salvatore Maria, and Ilaria Bufalari. "Trasformare le rappresentazioni mentali e neurali del corpo e del sé." RIVISTA SPERIMENTALE DI FRENIATRIA, no. 1 (March 2015): 113–28. http://dx.doi.org/10.3280/rsf2015-001009.
Повний текст джерелаCooper, Steven H. "Interpretive Fallibility and the Psychoanalytic Dialogue." Journal of the American Psychoanalytic Association 41, no. 1 (March 1993): 95–126. http://dx.doi.org/10.1177/000306519304100104.
Повний текст джерелаPescia, Lorenza. "La femminilizzazione degli agentivi nell’era digitale: la rappresentazione linguistica delle donne e google translate." Babylonia Journal of Language Education 3 (December 20, 2021): 102–9. http://dx.doi.org/10.55393/babylonia.v3i.133.
Повний текст джерелаKloc, Wojciech, Witold Libionka, Wojciech Skrobot, and Krzysztof Basiński. "Neurochirurgiczne leczenie bólu– część II. Współczesne metody leczenia chirurgicznego neuralgii nerwu trójdzielnego i innych przewlekłych bólów twarzy." Ból 16, no. 4 (December 31, 2015): 43–50. http://dx.doi.org/10.5604/1640324x.1193857.
Повний текст джерелаSekulić Sović, Martina, Vlasta Erdeljac, and Hrvoje Hećimović. "Medijalni temporalni režanj kao neuralni korelat leksičko‐semantičke obrade apstraktnosti i konkretnosti kod osoba s epilepsijom." Govor/Speech 33, no. 1 (April 10, 2017): 39–66. http://dx.doi.org/10.22210/govor.2016.33.02.
Повний текст джерелаDecherchi, Carlo, and Pier Giuseppe Giribone. "Prospective estimate of financial risk measures through dynamic neural networks: an application to the U.S. market." Risk Management Magazine 1, no. 2020 (April 8, 2020): 50–69. http://dx.doi.org/10.47473/2020rmm0008.
Повний текст джерелаДисертації з теми "NeuralRTI"
Fabbri, Alessandro. "Reti neurali in ambito finanziario." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19593/.
Повний текст джерелаKarlsteen, Joakim. "Fuskdetektion med artificiellt neuralt nätverk." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20527.
Повний текст джерелаDet finns övrigt digitalt material (t.ex. film-, bild- eller ljudfiler) eller modeller/artefakter tillhörande examensarbetet som ska skickas till arkivet.
Soncini, Filippo. "Classificazione di documenti tramite reti neurali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20509/.
Повний текст джерелаEklund, Björn. "Uppdelning av ett artificiellt neuralt nätverk." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5667.
Повний текст джерелаCorazza, Michele. "Coreference Resoultion basata su reti neurali deep." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14554/.
Повний текст джерелаVagnoni, Ulderico. "Analisi di immagini storiche con reti neurali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19624/.
Повний текст джерелаBrigandì, Camilla. "Utilizzo della omologia persistente nelle reti neurali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Знайти повний текст джерелаNicklasson, Emma, and Erik Nyqvist. "Ansiktsautentiseringssystem med neuralt nätverk : Baserat på bildklassificering." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84338.
Повний текст джерелаFace recognition using machine learning is a changing field and is used in many contexts in today’s society, for example as an authentication method in mobile phones. Most face recognition systems have had large budgets and strong developers behind them, but is it possible to create a working system with a limited amount of resourses and data? This project investigates how much data is required to produce a working face recognition module for an office environment based on image classification. This project used a pretrained Convolutional Neural Network (ResNet34), data collected with the help of the client, and an image database from NVIDIA. The results show that the amount of data required to produce and reliable model probably exceeds the amount that is reasonable to collect from the user.
ZANCATO, LUCA. "Sull'addestrabilità e generalizzazione delle Reti Neurali Profonde." Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3446030.
Повний текст джерелаThe last few years have witnessed the rise of Deep Neural Networks. Since the introduction of AlexNet in 2012, the community of researchers and industries employing Deep Learning has exploded. This surge in attention led to the development of State of The Art algorithms in many different fields such as Computer Vision, Natural Language Processing and Time Series modeling. The empirical success of Deep Learning posed new methodological challenges for academia and allowed industry to deploy world-wide large scale web services unthinkable ten years ago. Despite such incontrovertible success, Deep Learning does not come free of issues: model design is highly costly, model interpretability is not easy, deployment often requires very specialized experts and, not least, any Deep Neural Network requires a large amount of data for training. Moreover, from a theoretical standpoint many important guarantees on optimization convergence and generalization are still lacking. In this thesis we address trainability and generalization of Deep Neural Network models: we analyze the optimization trajectories and the generalization of typical over-parametrized models; moreover, we design a specialized inductive bias and regularization scheme to foster interpretability and generalization of Deep Neural Networks. The starting point in our analysis is a recently proposed tool: the Neural Tangent Kernel for over-parametrized models. Building on this fundamental result, we investigate the number of optimization steps that a pre-trained Deep Neural Network needs to converge to a given value of the loss function ("Training Time"). Moreover, we exploit the Neural Tangent Kernel theory to solve the problem of choosing the best pre-trained Deep Neural Network within a "model zoo" when only the target dataset is known and without training any model ("Model Selection"). Our analysis started to unblock the adoption of real-world Computer Vision AutoML systems: Users fine-tune models selected from a large "model zoo" testing hundreds of combinations of different architectures, pre-training sets and hyper-parameters, but are reluctant to do so without an estimate of the expected training cost. Our results are a step towards better understanding of transfer learning through a novel study on the interplay between generalization and highly over-parametrized Deep Neural Networks. We then build a specialized Deep architecture equipped with a strong inductive bias and explicit regularization, that are designed both to constrain the representational power of our architecture and to allow Bayesian automatic complexity selection. Then, we show our novel method can be successfully applied both for non-linear System Identification and for Anomaly Detection of large scale Time Series.
Cino, G. "Implementazione ed analisi di reti neurali wetware." Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/180804.
Повний текст джерелаКниги з теми "NeuralRTI"
Floreano, Dario. Manuale sulle reti neurali. 2nd ed. Bologna: Il mulino, 2002.
Знайти повний текст джерелаCeschia, Mario. La previsione delle precipitazioni a scala mensile: Confronto tra modelli statistici e a reti neurali, il caso di Udine. Udine: Forum, 2000.
Знайти повний текст джерелаBuzzanca, Giuseppe. Musica e intelligenza artificiale: Per un modello connessionista di mente musicale, teoria dei linguaggi formali, reti neurali artificiali e relative applicazioni in informatica musicale. Bari: Florestano edizioni, 2016.
Знайти повний текст джерелаwilliam, Emma. Sviluppo Di Reti Neurali: Come Vengono Sviluppate le Reti Neurali? Independently Published, 2022.
Знайти повний текст джерелаMarco, Tommaso. Evoluzione Delle Reti Neurali. Independently Published, 2022.
Знайти повний текст джерелаColecchia, Nicola. Neuroinformazioni: Campi Di Applicazione Delle Reti Neurali. Independently Published, 2017.
Знайти повний текст джерелаSisini, Francesco. Introduzione Alle Reti Neurali con Esempi in Linguaggio C. Independently Published, 2018.
Знайти повний текст джерелаSisini, Francesco. Introduzione Alle Reti Neurali con Esempi in Linguaggio C. Independently Published, 2019.
Знайти повний текст джерелаColecchia, Nicola. Cosa Sono I Neuroni Artificiali: Campi Di Applicazione Delle Reti Neurali. Independently Published, 2018.
Знайти повний текст джерелаSisini, Francesco, and Valentina Sisini. Reti Neurali Non Supervisionate : il Cognitrone Di Fukushima: Con Codice in Linguaggio C. Independently Published, 2019.
Знайти повний текст джерелаЧастини книг з теми "NeuralRTI"
D’Amato, Luca Colucci, and Umberto di Porzio. "Le cellule staminali neurali." In Introduzione alla neurobiologia, 91–103. Milano: Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1944-7_7.
Повний текст джерелаCascini, Giuseppe Lucio, Vincenzo Donato, and Oscar Tamburrini. "Introduzione alle reti neurali." In Elementi di informatica in diagnostica per immagini, 217–33. Milano: Springer Milan, 2010. http://dx.doi.org/10.1007/978-88-470-1667-5_18.
Повний текст джерелаLi, Xuyang, Hamed Bolandi, Talal Salem, Nizar Lajnef, and Vishnu Naresh Boddeti. "NeuralSI: Structural Parameter Identification in Nonlinear Dynamical Systems." In Lecture Notes in Computer Science, 332–48. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25082-8_22.
Повний текст джерелаТези доповідей конференцій з теми "NeuralRTI"
Castro Ferreira, Thiago, Diego Moussallem, Ákos Kádár, Sander Wubben, and Emiel Krahmer. "NeuralREG: An end-to-end approach to referring expression generation." In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/p18-1182.
Повний текст джерела"NEURALTB WEB SYSTEM - Support to the Smear Negative Pulmonary Tuberculosis Diagnosis." In 9th International Conference on Enterprise Information Systems. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0002366401980203.
Повний текст джерелаChen, Zhennong, Kunal Gupta, and Francisco Contijoch. "Motion correction image reconstruction using NeuralCT improves with spatially aware object segmentation." In Seventh International Conference on Image Formation in X-Ray Computed Tomography (ICIFXCT 2022), edited by Joseph Webster Stayman. SPIE, 2022. http://dx.doi.org/10.1117/12.2646402.
Повний текст джерела