Добірка наукової літератури з теми "Nettoyages chimiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nettoyages chimiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nettoyages chimiques"
Oltra, R., and J. P. Boquillon. "Aspects physico-chimiques du nettoyage de surface par laser : critères de choix de la longueur d'onde." Le Journal de Physique IV 09, PR5 (May 1999): Pr5–161—Pr5–165. http://dx.doi.org/10.1051/jp4:1999549.
Повний текст джерелаMennane, Z., I. Houlali, R. Charof, J. Abrini, and N. Elmtili. "Hygiene quality of traditional and industrial table olives from markets in Rabat-Salé and Temara cities in Morocco." African Journal of Clinical and Experimental Microbiology 22, no. 1 (January 26, 2021): 88–92. http://dx.doi.org/10.4314/ajcem.v22i1.11.
Повний текст джерелаMoussaoui, Abderrahmane. "Violence extrême." Anthropen, 2020. http://dx.doi.org/10.17184/eac.anthropen.134.
Повний текст джерелаДисертації з теми "Nettoyages chimiques"
Goujon, Christophe. "Conséquences des nettoyages chimiques sur la réactivité de la surface externe des tubes de générateurs de vapeur des centrales nucléaires à réacteur à eau sous pression." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066723.
Повний текст джерелаIn the secondary circuit of nuclear Pressurized Water Reactors, magnetite (Fe3O4) deposits lead to Steam Generator (SG) fouling, decreasing the thermal performance and possibly enhancing the risk of SG tube cracking. As a counteraction, chemical cleanings have become the primary strategy to remove oxide deposits in SGs of the EDF fleet. The aim of this study is to investigate the effect of chemical cleaning on SG tubes surface reactivity. First, an electrochemical study was performed to deposit magnetite on substrates made of Inconel 600 and 690 (SG tubes materials). Thermodynamic calculations, voltamperometric studies and deposit characterizations were performed to define the experimental protocol. Magnetite films with a thickness up to several dozen on micrometers were grown by cathodic electrodeposition. Then, SG tubes were fouled in a specific experimental loop, FORTRAND. In this device, magnetite and soluble iron were formed and released in solution by carbon steel pipes corrosion in feedwater circuit representative conditions. Then, corrosion products were flow-carried to the autoclave where their precipitation and deposition on heated SG tubes led to tubes fouling. To reproduce surface characteristics of SG tubes surface, a static oxidation step was first performed in FORTRAND autoclave and result in the formation of a fully covering passive layer on the SG tubes surface.Then in-situ fouling test was done by recirculation in FORTRAND test loop. The magnetite deposit formed on tubes was composed of a dense layer of small crystals. Second, chemical cleaning processes were applied on fouled substrates and tubes in a specific experimental device ECCLIPS designed for this purpose. SG industrial cleaning processes timing and thermochemical conditions were strictly respected during these operations and lead to the dissolution of most of the fouling deposit. The passive layer was still covering the whole surface of the tube and no variation in its thickness or composition was noticed which could indicate that chemical cleaning have no effect on the SG tubes integrity. Finally, cleaned tubes fouling was performed in FORTRAND in the same experimental conditions as before the cleaning test. It could be concluded that there is no effect of chemical cleaning on the fouling kinetics of SG tubes for a short period as the amount of deposit formed before and after cleaning was identical. Nevertheless, the small crystallite dense layer observed before cleaning was not present on cleaned tubes and the size of crystallites were bigger after cleaning. For a short period, this morphology could result in the formation of a fouling deposit with more porosity. As the increase of deposit porosity can impact the thermal transfer at the SG tube surface, morphology changes, hardly predictible, could be important for the SG thermal performance after chemical cleaning. For a longer period, frequent SG cleaning applications should prevent the densification of the deposit and thus delay performance loss over time
Abbadie, Alexandra. "Nettoyage chimique humide de surfaces silicium (appliqué au recyclage), nettoyage chimique humide et préparation de surface d'alliages silicium-germanium et de couches de germanium pur." Toulouse 3, 2004. http://www.theses.fr/2004TOU30082.
Повний текст джерелаDelaunay, David. "Nettoyage éco-efficace de membranes planes et spirales d’ultrafiltration de lait écrémé : approches physico-chimiques et hydrodynamiques concertées." Rennes 1, 2007. http://www.theses.fr/2007REN1S094.
Повний текст джерелаCleaning is a key step of membrane processes used in the food industry. It allows to restore the membrane flux and selectivity by eliminating irreversible fouling. Currently, cleaning hasn't been mastered, expensive and polluting, due to a lack of knowledge of the fundamental mechanisms of cleaning. This study follows an EcoDesign approach that aims to install membrane processes as sustainable production processes for the skim milk ultrafiltration with spiral wound module. 3 axis were followed: critical analysis with an EcoDesign approach of empiric cleaning processes in the industry, a study of dynamic protein adsorption/desorption mechanisms to understand the respective part of physicochemistry and hydrodynamic, a search for ecologically and economically efficient detergents. The efficiency of cleaning was measured with a traditional method, namely recovery of the membrane permeability, and with an original FTIR-ATR method, quantifying the concentration of residual proteins on the membrane surface. The latter turned out to be the best tool in order to evaluate the efficiency of membrane cleaning, whereas the flux can be misleading
Fontaine, Catherine. "Procédés physique et chimique de prépurification des charbons : application à la formulation d'ultracarbofluides." Compiègne, 1991. http://www.theses.fr/1991COMPD384.
Повний текст джерелаDominget, Alexandre. "Les techniques dérivées de la microscopie à force atomique pour la caractérisation des interconnexions après polissage mécano-chimique et nettoyage." Grenoble INPG, 2007. http://www.theses.fr/2007INPG0137.
Повний текст джерелаCleaning efficiency and the removal of metallic contaminations have appreciable impact on productivity and reliability. The control of metallic residuals is essential with the implementation of new integration schemes such as self aligned barrier. This study de,. Als with the use of two derivative AFM techniques for the characterization of post-CMP and post-CMP cleaned surfaces: the c-AFM for the measurement of surface leakage and the KFM for the measurement of surface potentials and work functions. The first part highlights that the Ta/TaN polishing time has a crucial impact on the surface leakage. The issues observed during the measurements with our experimental conditions will be discussed. KFM analyses show the impact of CMP and post-CMP clean parameters on surface potentials. Work function measurements on post-CMP copper samples show the influence of the passivation layer. The copper work function is reduced, depending on the nature of the passivation layer formed during the immersion in the cleaning solution
Ostermann, Elodie. "Etude la croissance dendritique du cuivre dans l'acide oxalique : application au procédé de nettoyage post-CMP en microélectronique." Paris 6, 2005. https://tel.archives-ouvertes.fr/tel-01591863.
Повний текст джерелаRichez, Patricia. "Étude d'un nouveau procédé de nettoyage des générateurs de vapeur des centrales nucléaires." Compiègne, 1996. http://www.theses.fr/1996COMP959S.
Повний текст джерелаConstant, Isabelle. "Mécanismes de retrait des contaminations particulaire et métallique sur les substrats de la microélectronique : Optimisation des procédés de nettoyage après polissage mécano-chimique." Aix-Marseille 2, 2000. http://www.theses.fr/2000AIX22020.
Повний текст джерелаMettler, Eric. "Etude des caractéristiques microbiologiques et physico-chimiques, après nettoyage et désinfection, de surfaces colonisées par des biofilms, dans divers ateliers de l'industrie alimentaire et au laboratoire." Dijon, 1996. http://www.theses.fr/1996DIJOS067.
Повний текст джерелаBriend, Guillaume. "Développement d'un nouveau procédé de nettoyage chimique humide pour les surfaces front end des technologies CMOS (45 nm et au-delà) intégrant de nouveaux matériaux." Grenoble INPG, 2009. http://www.theses.fr/2009INPG0015.
Повний текст джерелаIn microelectronics, the course of miniuaturization imposes the introduction of metal and dielectrics layers in CMOS transistors to improve electrical yields. However, this integration involves a total review of process (thermal treatment, etch, wet steps. . . ). This work particularly focus on Front End cleans steps around the gate. Challenges are following : first, there must remove more and more all types of contamination with minimum materials consumption and without damages on sensitive structures. On the other hand, the process must be chemical compatibility with new materials. There also must be integrated in a new configuration tool (single wafer instead of batch tool). Thus, they must be involved to give best performances. It's why, today, provide an Advanced clean process for CMOS sub-45nm technology node is a real challenge
Тези доповідей конференцій з теми "Nettoyages chimiques"
Leduc, A., and C. Gentil. "GV : corrosion (IGSCC) et encrassement/colmatage, remèdes associés [nettoyage chimique, conditionnement chimique (limitation des polluants)]." In Chimie et exploitation. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016chi04p.
Повний текст джерела