Зміст
Добірка наукової літератури з теми "Neige – Télédétection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Neige – Télédétection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Neige – Télédétection"
Marchane, Ahmed, Lionel Jarlan, Lahoucine Hanich, and Abdelghani Boudhar. "Caractérisation de l'enneigement sur l'atlas marocain par le capteur MODIS et relation avec le climat (période 2000-2011)." Revue Française de Photogrammétrie et de Télédétection, no. 204 (April 8, 2014): 13–22. http://dx.doi.org/10.52638/rfpt.2013.18.
Повний текст джерелаBoudhar, Abdelghani, Lahoucine Hanich, Ahmed Marchane, Lionel Jarlan, and Abdelghani Chehbouni. "Apport des données FORMOSAT2 à la modélisation du contenu en eau du manteau neigeux du Haut Atlas marocain." Revue Française de Photogrammétrie et de Télédétection, no. 204 (April 8, 2014): 51–56. http://dx.doi.org/10.52638/rfpt.2013.21.
Повний текст джерелаDecharme, Bertrand, and Jean-François Mahfouf. "Les schémas de surface continentale pour le suivi et la prévision du système Terre au CEPMMT." La Météorologie, no. 108 (2020): 077. http://dx.doi.org/10.37053/lameteorologie-2020-0019.
Повний текст джерелаFallourd, Renaud, Amaury Dehecq, Matthias Jauvin, Yajing Yan, Gabriel Vasile, Michel Gay, Emmanuel Trouvé, and Jean-Marie Nicolas. "Suivi des glaciers de montagne par imagerie radar satellitaire." Revue Française de Photogrammétrie et de Télédétection, no. 219-220 (January 19, 2020): 91–105. http://dx.doi.org/10.52638/rfpt.2019.471.
Повний текст джерелаDelbart, Nicolas, Samuel Dunesme, Emilie Lavie, Malika Madelin, and Régis Goma. "La télédétection de la neige dans les Andes comme outil de prévision des débits des rivières du Cuyo." Revue de géographie alpine, no. 103-2 (September 7, 2015). http://dx.doi.org/10.4000/rga.2861.
Повний текст джерелаTrouvé, Emmanuel, Renaud Fallourd, Amaury Dehecq, Matthias Jauvin, Yajing Yan, Gabriel Vasile, Michel Gay, and Jean-Marie Nicolas. "Suivi des glaciers de montagne par imagerie radar satellitaire." Revue Française de Photogrammétrie et de Télédétection, no. 219-220 (November 10, 2020). http://dx.doi.org/10.52638/rfpt.2019.390.
Повний текст джерелаShaban, Amin, Ghaleb Faour, Mohamad Khawlie, and Chadi Abdallah. "Remote sensing application to estimate the volume of water in the form of snow on Mount Lebanon / Application de la télédétection à l’estimation du volume d’eau sous forme de neige sur le Mont Liban." Hydrological Sciences Journal 49, no. 4 (August 2004). http://dx.doi.org/10.1623/hysj.49.4.643.54432.
Повний текст джерелаДисертації з теми "Neige – Télédétection"
Bourdelles, Barbara. "Etude des caractéristiques de surface de la neige par télédétection visible et infrarouge." Phd thesis, Université Joseph Fourier (Grenoble), 1994. http://tel.archives-ouvertes.fr/tel-00759878.
Повний текст джерелаHaddjeri, Ange. "Modélisation de l'évolution de la neige soufflée et évaluation de la variabilité spatiale induite." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES085.
Повний текст джерелаAlpine snow cover is highly variable both spatially and temporally. An accurate knowledge of this variability is a high stake for water supply, hydropower production, and hazard forecasting such as avalanches and floods. Snowpack observation and numerical simulation are complementary tools for these applications. In France, the ISBA-Crocus snow model is operated on a daily basis but currently only provides a large-scale assessment of the snow conditions. The future evolution of this system will rely on a 250 m horizontal resolution to better describe the spatial variability of the snow cover. This resolution requires the representation of additional processes such as lateral wind redistribution for realistic simulations at high elevations. As with similar snow modeling systems in other countries, the evaluation of these spatialized regional simulations is still challenging due to the sparsity of observations and various interacting uncertainties and processes contributing to spatial variability at this scale. In this context, the objective of this PhD is to develop and evaluate a spatialized alpine snow simulation system with wind lateral redistribution. Emphasis will be placed on the evaluation methods required to evaluate snow regional simulations with satellite observations, which should also benefit similar snow simulation systems in mountain environments. In the first part, we present the design and development of the SnowPappus blowing snow model, coupled with the ISBA-Crocus simulation system over 2-dimensional simulation domains with targeted applications covering large spatial and temporal extents (all French mountain ranges and several years). The SnowPappus model simulates blowing snow occurrence, horizontal transport flux, and sublimation rate as a function of 2D atmospheric forcing and snow surface parameters. Erosion and accumulation are then obtained from an upwind scheme of mass balance. Point-scale evaluations of snow occurrence detection and blowing snow fluxes showed that SnowPappus performs as well as the larger-scale SYTRON scheme while adding access to spatialized information. Then, we evaluate spatialized simulations of the SnowPappus model over a 902 km² region in the French Alps with satellite images during three snow seasons. We compared snow cover simulations to the spatial distribution of snow height obtained from Pleiades satellites stereo-imagery and to Snow Melt-Out Dates derived from Sentinel-2 optical images. The sensitivity of simulations to three different precipitation datasets and two horizontal resolutions is also analyzed. Our results show that the SnowPappus model enhances the snow cover spatial variability at high elevations and near peaks and ridges. Our study shows the necessity to consider error contributions from precipitation forcing and the unresolved subgrid variability for robust evaluations of spatialized snow simulations. Finally, we tested and adapted Fuzzy verification methods, developed for atmospheric simulation evaluations to snow use cases. This kind of verification method is more challenging than spatial distribution analysis and helps to assess the spatial agreements between observations and simulations. Although fuzzy verification techniques can help to better qualify the spatial agreement between simulations and observations, they have limitations over complex topography and do not allow for disentangling error from true localization errors with intensity error compensation. Which is a strong limitation for real use cases of alpine snow forecast verification. The methodological advances of this work help to identify the strengths and weaknesses of high-resolution snow simulations, including the added value of an explicit representation of blowing snow. This is an important step in guiding the use of such simulations in all target applications among winter mountain stakeholders
Masson, Théo. "Fusion de données de télédétection haute résolution pour le suivi de la neige." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT112/document.
Повний текст джерелаRemote sensing acquisitions have complementary characteristics in terms of spatial and temporal resolution and can measure different aspects of snow cover (e.g., surface physical properties and snow type). By combining several acquisitions, it should be possible to obtain a precise and continuous monitoring of the snow. However, this task has to face the complexity of processing satellite images and the possible confusion between different materials observed. In particular, the estimation of fractional information, i.e., the amount of snow in each pixel, requires to know the proportion of the materials present in a scene. These proportions can be obtained performing spectral unmixing. The challenge is then to effectively exploit the information of different natures that are provided by the multiple acquisitions in order to produce accurate snow maps.Three main objectives are addressed by this thesis and can be summarized by the three following questions:- What are the current limitations of state-of-the-art techniques for the estimation of snow cover extent from optical observations?- How to exploit a time series for coping with the spectral variability of materials?- How can we take advantage of multimodal acquisitions from optical sensors for estimating snow cover maps?A complete study of the various snow products from the MODIS satellite is proposed. It allows the identification of numerous limitations, the main one being the high rate of errors during the estimation of the snow fraction (approximately 30%).The experimental analysis allowed to highlight the sensitivity of the spectral unmixing methods against the spectral variability of materials.Given these limitations, we have exploited the MODIS time series to propose a new endmembers estimation approach, addressing a critical step in spectral unmixing. The low temporal evolution of the medium (except snow) is then used to constrain the estimation of the endmembers not only on the image of interest, but also on images of the previous days. The effectiveness of this approach, although demonstrated here, remains limited by the spatial resolution of the sensor.Data fusion has been considered aiming at taking advantage of multiple acquisitions with different characteristics in term of resolution available on the same scene. Given the limitations of the actual methods in the case of multispectral sensors, a new fusion approach has been proposed. Through the formulation of a new model and its resolution, the fusion between optical sensors of all types can be achieved without consideration of their characteristics. The various experiments on the estimation of snow maps show a clear interest of a better spatial resolution to isolate the snow covered areas. The improvement in spectral resolution will improve future approaches based on spectral unmixing.This work explores the new possibilities of development for the observation of snow, but also for the combined use of the satellite images for the observation of the Earth in general
Köhn, Jacqueline. "Caractérisation de la température de la neige par télédétection micro-onde passive au Canada." Mémoire, Université de Sherbrooke, 2006. http://savoirs.usherbrooke.ca/handle/11143/2502.
Повний текст джерелаMazeh, Fatme. "Modélisation Numérique de la Réponse du Radar à la Neige pour Mesurer sa Profondeur avec la Technique de la Rétrodiffusion Multiple." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT055/document.
Повний текст джерелаStudy of snow is an important domain of research in hydrology and meteorology. It has been demonstrated that snow physical properties can be retrieved using active microwave sensors. This requires an understanding of the interaction between electromagnetic (EM) waves with natural media. The objective of this work is two-fold: to study numerically all physical forward models concerning the EM wave interaction with snow and to develop an inverse scattering algorithm to estimate snow depth based on radar backscattering measurements at different frequencies and incidence angles. For the first part, the goal is to solve the scattering calculations by means of the well-known electromagnetic simulator Ansoft High Frequency Structure Simulator (HFSS). The numerical simulations include: the effective permittivity of snow, surface scattering phenomena in layered homogeneous media (air-snow-ground) with rough interfaces, and volume scattering phenomena when treating snow as a dense random media. So, the critical issue for the first part of this thesis is testing the validity of theoretical models through a careful numerical setup.For the second part, the study is extended to develop a retrieval method to estimate snow thickness over ground from backscattering observations at L- and X-band (1.5 and 10 GHz) using multiple incidence angles. The return signal from snow over ground is influenced by: surface scattering, volume scattering, and the noise effects of the radar system. So, the backscattering coefficient from the medium is modelled statistically by including a white Gaussian noise (WGN) into the simulation. This inversion algorithm involves two steps. The first is to estimate snow density using L-band co-polarized backscattering coefficient at normal incidence. The second is to estimate snow depth from X-band co-polarized backscattering coefficients using two different incidence angles. For a 0.02 noise variance, all retrieved values have an error less than 2% for a snow depth range of [50-300] cm. This algorithm was verified by simulating using Agilent’s SystemVue electronic system level design software
Leroux, Catherine. "Etude théorique et expérimentale de la réflectance de la neige sur le spectre solaire : application à la télédétection." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 1996. http://tel.archives-ouvertes.fr/tel-00781634.
Повний текст джерелаGalligani, Victoria Sol. "La radiométrie micro-onde et millimétrique pour la caractérisation et quantification des nuages de glace et de la neige." Observatoire de Paris, 2014. https://hal.science/tel-02095287.
Повний текст джерелаQuantification of the cloud frozen phase on a global basis is essential to fully capture and quantify the Earth energy budget and hydrological cycle. The estimation of frozen quantities from satellite remote sensing, however, is at a very early stage. The main reason is the complex variability of the cloud frozen phase and the lack of parameterizations of their microphysical properties, and thus radiative properties. This thesis contributes to the development of the ice cloud remote sensing, by providing a better understanding of the sensitivity of microwave and millimeter satellite observations to the microphysical properties of the frozen phase, specifically snow. Current microwave and millimeter observations are interpreted via radiative transfer simulations, mainly for passive observations, but active measurements are also considered. Two main studies are pursued: (1) the analysis and interpretation of specific polarized scattering signatures over ice and snow clouds, and (2) the simulation of realistic passive and active microwave responses over ice and snow clouds, and their evaluation with satellite observations. Polarized observations are carefully analyzed with ancillary data and are interpreted with radiative transfer simulations, including the first polarized passive observations above 100GHz with Megha-Tropiques. Finally, the radiative transfer model is coupled to a meso- scale cloud model to simulate consistently coincident active and passive observations of real scenes, and assess the sensitivity of active and passive simulations to the different microphysical parameters
Vachon, François. "Estimation de l'équivalent en eau de la neige en milieu subarctique du Québec par télédétection micro-ondes passives." Thèse, Université de Sherbrooke, 2009. http://savoirs.usherbrooke.ca/handle/11143/2806.
Повний текст джерелаChagnon, Frédéric. "Caractérisation des états de surface par télédétection infrarouge thermique multispectrale contribution à l'étude des conditions de viabilité hivernale." Thèse, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/2783.
Повний текст джерелаBusseau, Bruno-Charles. "Analyse des effets de la végétation sur le couvert de neige dans la zone de transition arctique-subarctique par mesures in-situ et télédétection optique (Nunavik)." Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10160.
Повний текст джерелаAbstract : Recent studies have shown that northern vegetation has been growing in relation to a warming climate over the last four decades, especially across the transition zone between tundra and taiga. Shrub growth affects snow properties and the surface energy budget, which must be better studied to quantify shrub-snow-climate feedbacks. The objective of this research is to improve the characterization of the impact of shrubs on snow evolution, from its accumulation to its melt, using in-situ and satellite measurements. The research is presented for the Umiujaq site, Nunavik, representative of the low Arctic – Subarctic transition zone. Snow depth, measured along numerous transects spanning different land cover types is found to increase by a factor 2.5 to 3 between tundra and forest, while snow density decreases. This illustrates the trapping effect of vegetation well. Complementary continuous snow depth measurements using weather stations from two sites (tundra with low shrubs and a small clearing with shrubs within the forest) show different site-dependent behaviors. Spatial analysis from high-resolution Pleiades images combined with Landsat (Normalized Difference Snow Index) and MODIS (Fractional Snow Cover) images suggest a slight delay in melt over open and dense forest areas compared to tundra and dense high shrubs. A technic to measure snow depth using high resolution is also discussed.