Добірка наукової літератури з теми "Near-infrared upconversion"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Near-infrared upconversion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Near-infrared upconversion"

1

Baride, Aravind, Ganesh Sigdel, William M. Cross, Jon J. Kellar, and P. Stanley May. "Near Infrared-to-Near Infrared Upconversion Nanocrystals for Latent Fingerprint Development." ACS Applied Nano Materials 2, no. 7 (June 7, 2019): 4518–27. http://dx.doi.org/10.1021/acsanm.9b00890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xiang, Jun, Shenglin Zhou, Jianxun Lin, Jiating Wen, Yutong Xie, Bin Yan, Qiang Yan, Yue Zhao, Feng Shi, and Haojun Fan. "Low-Power Near-Infrared-Responsive Upconversion Nanovectors." ACS Applied Materials & Interfaces 13, no. 6 (February 1, 2021): 7094–101. http://dx.doi.org/10.1021/acsami.0c21115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Wen, Jiasi Wang, Jinsong Ren, and Xiaogang Qu. "Near-Infrared Upconversion Controls Photocaged Cell Adhesion." Journal of the American Chemical Society 136, no. 6 (February 3, 2014): 2248–51. http://dx.doi.org/10.1021/ja412364m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dou, Qing Qing, Hong Chen Guo, and Enyi Ye. "Near-infrared upconversion nanoparticles for bio-applications." Materials Science and Engineering: C 45 (December 2014): 635–43. http://dx.doi.org/10.1016/j.msec.2014.03.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Ruonan, Lifei Sun, Yangjian Cai, Yingying Ren, Hongliang Liu, Mark D. Mackenzie, and Ajoy K. Kar. "Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd,Gd:CaF2 waveguides." Chinese Optics Letters 19, no. 8 (2021): 081301. http://dx.doi.org/10.3788/col202119.081301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sola, Daniel, Adrián Miguel, Eduardo Arias-Egido, and Jose I. Peña. "Spectroscopy and Near-Infrared to Visible Upconversion of Er3+ Ions in Aluminosilicate Glasses Manufactured with Controlled Optical Transmission." Applied Sciences 11, no. 3 (January 26, 2021): 1137. http://dx.doi.org/10.3390/app11031137.

Повний текст джерела
Анотація:
In this work we report on the spectroscopic properties and the near-infrared to visible upconversion of Er3+ ions in aluminosilicate glasses manufactured by directionally solidification with the laser floating zone technique. Glasses were manufactured in a controlled oxidizing atmosphere to provide them with high optical transmission in the visible spectral range. Absorption and emission spectra, and lifetimes were assessed in both the visible and the near infrared spectral range. Green upconversion emissions of the 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions at 525 nm and 550 nm attributed to a two-photon process were observed under excitation at 800 nm. Mechanisms responsible for the upconversion luminescence were discussed in terms of excited state absorption and energy transfer upconversion processes. Excitation spectra of the upconverted emission suggest that energy transfer upconversion processes are responsible for the green upconversion luminescence.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kshetri, Yuwaraj K., Bhupendra Joshi, Tae-Ho Kim та Soo W. Lee. "Visible and near-infrared upconversion in α-sialon ceramics". Journal of Materials Chemistry C 5, № 14 (2017): 3542–52. http://dx.doi.org/10.1039/c6tc05347e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zheng, Xiang, Ranjith Kumar Kankala, Chen-Guang Liu, Shi-Bin Wang, Ai-Zheng Chen, and Yong Zhang. "Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis." Coordination Chemistry Reviews 438 (July 2021): 213870. http://dx.doi.org/10.1016/j.ccr.2021.213870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Zhaofeng, Yezhou Li, Qi Jiang, Huidan Zeng, Zhipeng Ci, and Luyi Sun. "Pure near-infrared to near-infrared upconversion of multifunctional Tm3+ and Yb3+ co-doped NaGd(WO4)2 nanoparticles." J. Mater. Chem. C 2, no. 22 (2014): 4495–501. http://dx.doi.org/10.1039/c4tc00424h.

Повний текст джерела
Анотація:
Pure near-infrared to near-infrared upconversion and paramagnetism were observed in NaGd(WO4)2:Tm3+,Yb3+ nanoparticles, suggesting that they are promising materials for applications in high-contrast bio-imaging and bio-separation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Xingzhong, Yang Li, Kai Huang, Ling Huang, Xiumei Tian, Huafeng Dong, Ru Kang, et al. "Trap Energy Upconversion‐Like Near‐Infrared to Near‐Infrared Light Rejuvenateable Persistent Luminescence." Advanced Materials 33, no. 15 (February 26, 2021): 2008722. http://dx.doi.org/10.1002/adma.202008722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Near-infrared upconversion"

1

Hehlen, Markus P. "Near-infrared to visible upconversion in ternary rare-earth halides Cs3M2X9 (M=Yb, ER, Y, Lu; X = Cl, Br, I) /." [S.l.] : [s.n.], 1994. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Riedener, Anton M. "Near-infrared to visible upconversion of Er[hoch3plus], Tm[hoch3plus]/Yb[hoch3plus], Sm[hoch3plus] and Dy[hoch3plus] in host materials with low energy phonons /." Bern : [s.n.], 1997. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Compton, Steven Patrick. "Upconversion and near infrared spectroscopy of erbium doped calcium sulfide." 2009. http://purl.galileo.usg.edu/uga%5Fetd/compton%5Fsteven%5Fp%5F200912%5Fphd.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Jun. "Hybrid Organic/Inorganic Optical Upconversion Devices." Thesis, 2011. http://hdl.handle.net/10012/6405.

Повний текст джерела
Анотація:
The widely available charge coupled device (CCD) and lately CMOS imaging devices have created many applications on a mass scale. However these devices are limited to wavelengths shorter than about 1 μm. Hybrid photon upconversion devices have been developed recently. The end goal is to achieve an alternative technology for imaging in the 1.5-μm region. The hybrid upconversion idea relies on the integration of a photodetector and an organic light emitting diode (OLED). Under a forward bias for the OLED, the detected signal in the Photodetector is sent to the OLED, resulting in an increase in emission at a shorter wavelength and therefore achieving optical up conversion. An OLED device can simply consists of a stack of anode, a hole transport layer (HTL), a light-emitting layer, an electron transport layer (ETL), a cathode layer, and it typically emits visible light. As each organic molecule is a topologically perfect structure, the growth of each organic layer does not require “lattice matching”, which has been the fundamental limit for inorganic semiconductor monolithic devices. Thus, integration of an OLED with a III–V compound semiconductor is a highly feasible and desirable approach for making low-cost, large-area, potentially high efficiency devices. This thesis addresses the physics, fabrication and characterization of hybrid near infrared optical upconverters and their imaging application. Firstly, one novel hybrid optical upconverter structure is presented, which substantially improves the upconversion efficiency by embedding a metal mirror. Efficient carrier injection from the inorganic photodetector to the OLED is achieved by the insertion of a thin Au metal embedded mirror at the inorganic-organic interface. The upconversion efficiency was improved by more than 100%. Secondly, the overall upconversion efficiency can be increased significantly, by introducing a gain mechanism into the Photodetector section of the upconverter. A promising option to implement gain is a heterojunction phototransistor (HPT). An InGaAs-InP HPT was integrated with an OLED, which converts 1.5-μm Infrared light to visible light with a built-in electrical gain (~94). The overall upconversion efficiency was improved to be 1.55 W/W. Thirdly, this upconversion approach can also be used to realize a pixelless imaging device. A pixelless hybrid upconversion device consists of a large-area single-mesa device, where the OLED output is spatially correlated with the input 1.5-µm scene. Only the parts receiving incoming photons will emit output photons. To achieve this functionality, photon-generated carriers must flow mainly along the layer-growth direction when injected from the InGaAs light absorption layer into OLED light emission layer. A prototype of pixelless imaging device based on an i-In0.53Ga0.47As/C60 heterojunction was demonstrated, which minimized lateral current spreading. This thesis presents experimental results of the first organic/inorganic hybrid optical amplifer and the first hybrid near infrared imaging device.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsu, Yi-Husan, and 徐憶瑄. "Synthesis and characterization of near-infrared light triggered lanthanide-doped upconversion nanocrystals." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/08626558123607409893.

Повний текст джерела
Анотація:
碩士
中山醫學大學
應用化學系碩士班
103
This study mainly discusses the synthesis of NaYF4/LiYF4 nanoparticles containing Tm3+/Yb3+. The upconversion efficiency of these nanoparticles correlated to the equivalent of activator or base during the syntheses is also demonstrated. The TEM images of the particles prepared by autoclave under lower temperature show that most of the particles are irregular (AC7 and AC14). In the meantime, the particles could not show the upconversion efficiency under 980 nm excitation. In order to improve the diameter and the upconversion efficiency of the nanoparticles, we used the heating mantle for the synthesis of the nanoparticles. The nanoparticles with upconversion efficiency and diameter less than 100nm are successfully synthesized. To study the relationship between the equivalent of the activator / base and the upconversion efficiency of the nanoparticles, we increased the equivalent of the activator. The result indicated that the upconversion efficiency was not enhanced by increasing the equivalent of the activator. However, the increasing the equivalent of the base ( LiOH / NaOH) during the synthesis resulted in the enhanced upconversion efficiency of the nanoparticles. The further addition of Y(CH3CO2)3 and base (LiOH / NaOH) to the synthesized NaYF4/LiYF4:Yb,Tm nanoparticles by the heating mantle led to the formation of new nanoparticles. The TEM images of the nanoparticles show that the shapes of the nanoparticles transformed from hexagon to rod (L1S、L3S、N1S、N3S). The analysis of the length-to-width (aspect ratio, AR) of the rod (L1S (AR=3.90), L3S (AR= 3.77); N3S (AR=3.73), N1S (AR=2.64)) showed that the rod with the higher AR value exhibited the effective upconversion efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Bo-Chi, and 黃柏齊. "Organic near-infrared upconversion device with high current gain and conversion efficiency." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/32688876911960196493.

Повний текст джерела
Анотація:
碩士
國立臺灣科技大學
電子工程系
105
The whole paper describes that all-organic system is used as the material of upconversion devices. The characteristics of upconversion device designs are combined with organic photovoltaic(OPV); organic photodetector(OPD) and organic light emitting diode(OLED). The device mainly converts invisible light (NIR) into visible light through device internal. The organic upconversion device of this paper is composed of Chloroaluminum Phthalocyanine used as charge generation layer and OPD structure which is used to analyze the characteristics and high-efficiency organic exciplex emitting diode finally used as a emitting cell respectively. Firstly, the OPV structure is used to verify that single ClAlPc and mixed C70 show approximate External Quantum Efficiency(EQE) at 780nm. Secondly, we analyze the characteristics of ClAlPc as charge generation layer with hole-supplying OPD model through design of device. Finally, we combined OPV and OPD with OLED. In summary, the upconversion device shows 15.48% of upconversion efficiency and 1685 cd/m2 of high intensity when it is irradiated by 5 mW/cm2 NIR LED; moreover, the sensitivity of weak light shows 200 cd/m2 of intensity irradiated by 0.5 mW/cm2 NIR LED. KEYWORDS: Organic upconversion、Organic photodetector、Organic light emitting diode.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yu-LinChou and 周鈺琳. "Near-infrared light triggered photocaged upconversion nanoparticles for targeting、bioimage and chemotherapy." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/92178617371470125253.

Повний текст джерела
Анотація:
碩士
國立成功大學
化學系碩博士班
101
In this study, we formulated upconversion nanoparticles (UCNPs) as the NIR-triggered targeting and drug delivery vehicles that successfully delivered in vitro and in vivo to perform near-infrared light photocontrolled targeting, bioimaging, and chemotherapy. To achieve phototargeting, the tumor-homing agent, i.e. folic acid (FA), has been constructed as a photoresponsive molecule. FA has high affinity to folate receptor (FR), where FR is overexpressed on cancer cell surfaces and acted as a tumor marker. However, the number of FR expressed heterogeneously among different cancer cells limiting the tumor delivery capacity of FR endocytosis. Hence, we synthesized FA as the caged folate which was sensitive to UV light illumination. That is NIR light irradiated UCNPs to activate phototargeting with subsequent bioimaging and chemotherapy. For the chemotherapeutic effect, the anti-tumor drug doxorubicin was thiolated on the surface of UCNPs forming disulfide bond that can be cleaved by lysosomal enzymes within the cells. The caged UNCPs can serve as a platform for the improvement of selectively targeting and possible reduction of adverse side effect from chemotherapy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shu-WenWang and 王姝雯. "Near-infrared light triggered photocaged upconversion nanoparticles for targeting and drug delivery." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/32046711193566695875.

Повний текст джерела
Анотація:
碩士
國立成功大學
化學系碩博士班
100
Our research bases on the property of UCNPs (Upconversion nanoparticles) which absorb long-wavelength light and convert it to short-wavelength fluorescence. NaYF4:Yb, Tm UCNPs were coated with a thin layer of SiO2, which were further modified with amino groups. After surface functionalization, the targeting ability of folic acid and the anticancer drug DOX were covalently linked to the UCNPs via PEG (O,O′-bis[2-(succinylamino)ethyl]polyethylene glycol) and SPDP (3-(2-pyridyldithio)propionic acid N-hydroxysuccinimide ester), and folic acid further connected to the photocage (2-nitrobenzylamine hydrochloride) for light-induced application. NaYF4: Yb, Tm absorbed 980nm light source then released the 360nm UV fluorescence, so that the photocage on the folic acid absorbed the 360nm UV fluorescence via fluorescence resonance energy transfer then actived the photocleavage reaction. After photocleavage, the folic acid re-exposed and particles entered the folate receptor overexpression cancer cells via substance receptor-mediated endocytosis to target cancer cells. When particles entered cancer cells, S-S disulfide bonds connected to the surface of DOX released and poisoned the cancer cells. To demonstrate the specificity of folate-mediated targeting, we chose the folate receptor positive cancer cells and folate receptor negative cancer cells to test, then chose the folate receptor positive cancer cells for toxicity test. The results showed that particles modified with folic acid and folic acid connected to the photocage which was irradiated with 980 nm laser were targeted on folate receptor positive cancer cells. When they delivered to cancer cells, the drug DOX released and achieved the efficacy of cytotoxic cancer cells. UCNPs were irradiated with near-infrared (NIR) light to enable deep tissue- penetration depths, and by light induced it can control on time and space. If it can be applied on biomedical targeting and drug release, it will have developmental potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hsieh, Shih-Chi, and 謝時齊. "Study of Near-infrared Light-induced Excitation of Upconversion Nanoparticles for Optogenetic Applications." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/6699h9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Sheng-Kai, and 楊勝凱. "Development of versatile upconversion nanoparticles for near-infrared light-mediated photodynamic/photothermal therapies against cancer cells." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/qpw6u5.

Повний текст джерела
Анотація:
碩士
國立中興大學
化學工程學系所
104
In order to enhance the therapeutic efficacy of photodynamic therapy (PDT) in the deep tissues, the functionalized silica-coated upconversion nanoparticles (SiO2@UCNPs), Er3+/Yb3+-doped NaGdF4, were utilized as a drug nanocarrier capable of efficiently delivering photosensitizers, octadecane-modified rose bengal (18CRB, for PDT) and IR780 (for photothermal therapy (PTT)), into cancer cells for the PDT/PTT combination therapies. After being shielded with silica shell, the significant luminescence quenching behavior caused by the high energy vibrations between water species and rare-earth cations can be pronouncedly reduced. The drug-loaded UCNPs exhibits a mono-model size distribution with a ca 50 nm in particle size. The drug loading efficiencies of 18CRB and IR780 were 98 and 47 %, respectively. In vitro cytotoxic data demonstrate that with the 808-nm laser irradiation, the viability of cancer cells (CT26) incubated with 18CRB/IR780-loaded UCNPs was largely reduced due to the PTT-induced hyperthermia. Furthermore, combing the 980-nm laser irradiation, the cell apoptotic behavior could be further enhanced due to the PDT reaction activated by the specific visible light converted from the incident laser light by UCNPs. Our results demonstrate a promising combination effect of PTT and PDT against cancer cells.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Near-infrared upconversion"

1

Sasaki, Yoichi, Nobuhiro Yanai, and Nobuo Kimizuka. "Near-Infrared-to-Visible Photon Upconversion." In Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells, 29–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70358-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lüthi, S. "Near-Infrared to Visible Upconversion in Cs2NaYX6: 10% Er3+ (X=Cl, Br)." In Spectroscopy and Dynamics of Collective Excitations in Solids, 615. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5835-4_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumar, Ajay, and Venkata Krishnan. "Near Infrared Light Active Lanthanide-Doped Upconversion Nanoparticles: Recent Advances and Applications." In Springer Handbook of Inorganic Photochemistry, 339–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-63713-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chu, Zhaoyou, Benjin Chen, Wanni Wang, Hao Chen, and Haisheng Qian. "Chapter 8. Near-infrared Upconversion Nanomaterial-mediated Photothermal Conversion for Various Applications." In Photothermal Nanomaterials, 252–85. Cambridge: Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839165177-00252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wenger, Oliver S., and Hans U. Güdel. "Influence of Crystal Field Parameters on Near-Infrared to Visible Photon Upconversion in Ti2+ and Ni2+ Doped Halide Lattices." In Structure and Bonding, 59–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b11305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tao, Ke, Kang Sun, and Seok Ki Choi. "Upconversion nanocrystals for near-infrared-controlled drug delivery." In Photonanotechnology for Therapeutics and Imaging, 345–71. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817840-9.00012-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xie, Lili, Caihou Lin, Qiushui Chen, and Huang-Hao Yang. "Upconversion Nanomaterials for Near-infrared Light-Mediated Theranostics." In Theranostic Bionanomaterials, 321–40. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-815341-3.00014-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Near-infrared upconversion"

1

Chen, Shuo, Xiaogang Liu, and Thomas McHugh. "Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics." In Optical Biopsy XVII: Toward Real-Time Spectroscopic Imaging and Diagnosis, edited by Robert R. Alfano, Stavros G. Demos, and Angela B. Seddon. SPIE, 2019. http://dx.doi.org/10.1117/12.2506055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Si. "Near-infrared light-controlled soft materials based on upconversion (Conference Presentation)." In Molecular Machines, edited by Zouheir Sekkat. SPIE, 2018. http://dx.doi.org/10.1117/12.2321074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Do-Hyun, Jin U. Kang, Ronald W. Waynant, and Ilko K. Ilev. "Upconversion Fiber-Optic Confocal Microscopy using a Near-Infrared Light Source." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jiang, Yi, Yujie J. Ding, Ioulia B. Zotova, and Narasimha S. Prasad. "Recent progress on radiation detection from near-infrared to mid-infrared based on frequency upconversion." In SPIE Optical Engineering + Applications, edited by Edward W. Taylor and David A. Cardimona. SPIE, 2010. http://dx.doi.org/10.1117/12.861949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wei, Yanchun, Qun Chen, Baoyan Wu, and Da Xing. "Multifunctional upconversion nanoprobe for tumor fluorescence imaging and near-infrared thermal therapy." In Twelfth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2014), edited by Qingming Luo, Lihong V. Wang, and Valery V. Tuchin. SPIE, 2014. http://dx.doi.org/10.1117/12.2069018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Petrov, V., and F. Noack. "Parametric upconversion of tunable femtosecond pulses." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cwf24.

Повний текст джерела
Анотація:
Traveling-wave optical parametric generators pumped by Ti: sapphire regenerative amplifiers at 1 kHz repetition rate represent a convenient tool to produce powerful and highly reproducible femtosecond pulses in the near infrared. [1] Pumping by the second harmonic in order to cover the visible spectral region near 600 nm is, however, considerably complicated because of the substantial increase of the group-velocity mismatch. [2] We demonstrate here a rather simple way to avoid this problem by simultaneous phase-matching of two nonlinear optical processes, optical parametric amplification and sum-frequency generation in a single β-barium borate (BBO) nonlinear crystal.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maheshvaran, K., S. Arunkumar, R. Vijayakumar, and K. Marimuthu. "Near infrared and upconversion luminescence behaviour of Er3+/Yb3+ codoped boro-tellurite glasses." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schmidt, Timothy. "Oxygen Enhanced Upconversion of Near Infrared Light Beyond the Band Gap of Silicon." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

M. Gholizadeh, Elham, and Timothy Schmidt. "Oxygen-Enhanced Upconversion of near Infrared Light from Below the Silicon Band Gap." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Qihuang Gong, Zhijian Chen, Lixin Xiao, Yuan Zheng, and Jiashu Lu. "Photosensitizer-doped organic light-emitting diodes for near infrared to visible optical upconversion." In 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4552069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії