Статті в журналах з теми "Near infrared imaging probes"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Near infrared imaging probes.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Near infrared imaging probes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Li, Benhao, Jing Lin, Peng Huang, and Xiaoyuan Chen. "Near-infrared probes for luminescence lifetime imaging." Nanotheranostics 6, no. 1 (2022): 91–102. http://dx.doi.org/10.7150/ntno.63124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Klohs, Jan, Andreas Wunder, and Kai Licha. "Near-infrared fluorescent probes for imaging vascular pathophysiology." Basic Research in Cardiology 103, no. 2 (March 2008): 144–51. http://dx.doi.org/10.1007/s00395-008-0702-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ntziachristos, Vasilis, Christoph Bremer, Edward E. Graves, Jorge Ripoll, and Ralph Weissleder. "In Vivo Tomographic Imaging of Near-Infrared Fluorescent Probes." Molecular Imaging 1, no. 2 (April 1, 2002): 153535002002011. http://dx.doi.org/10.1162/15353500200201121.

Повний текст джерела
Анотація:
Fluorescence imaging is increasingly used to probe protein function and gene expression in live animals. This technology could enhance the study of pathogenesis, drug development, and therapeutic intervention. In this article, we focus on three-dimensional fluorescence observations using fluorescence-mediated molecular tomography (FMT), a novel imaging technique that can resolve molecular function in deep tissues by reconstructing fluorescent probe distributions in vivo. We have compared FMT findings with conventional fluorescence reflectance imaging (FRI) to study protease function in nude mice with subsurface implanted tumors. This validation of FMT with FRI demonstrated the spatial congruence of fluorochrome activation as determined by the two techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shieh, P., M. S. Siegrist, A. J. Cullen, and C. R. Bertozzi. "Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes." Proceedings of the National Academy of Sciences 111, no. 15 (March 31, 2014): 5456–61. http://dx.doi.org/10.1073/pnas.1322727111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ntziachristos, Vasilis, Christoph Bremer, Edward E. Graves, Jorge Ripoll, and Ralph Weissleder. "In Vivo Tomographic Imaging of Near-Infrared Fluorescent Probes." Molecular Imaging 1, no. 2 (April 1, 2002): 82–88. http://dx.doi.org/10.1162/153535002320162732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ma, Zhuoran, Feifei Wang, Weizhi Wang, Yeteng Zhong, and Hongjie Dai. "Deep learning for in vivo near-infrared imaging." Proceedings of the National Academy of Sciences 118, no. 1 (December 28, 2020): e2021446118. http://dx.doi.org/10.1073/pnas.2021446118.

Повний текст джерела
Анотація:
Detecting fluorescence in the second near-infrared window (NIR-II) up to ∼1,700 nm has emerged as a novel in vivo imaging modality with high spatial and temporal resolution through millimeter tissue depths. Imaging in the NIR-IIb window (1,500–1,700 nm) is the most effective one-photon approach to suppressing light scattering and maximizing imaging penetration depth, but relies on nanoparticle probes such as PbS/CdS containing toxic elements. On the other hand, imaging the NIR-I (700–1,000 nm) or NIR-IIa window (1,000–1,300 nm) can be done using biocompatible small-molecule fluorescent probes including US Food and Drug Administration-approved dyes such as indocyanine green (ICG), but has a caveat of suboptimal imaging quality due to light scattering. It is highly desired to achieve the performance of NIR-IIb imaging using molecular probes approved for human use. Here, we trained artificial neural networks to transform a fluorescence image in the shorter-wavelength NIR window of 900–1,300 nm (NIR-I/IIa) to an image resembling an NIR-IIb image. With deep-learning translation, in vivo lymph node imaging with ICG achieved an unprecedented signal-to-background ratio of >100. Using preclinical fluorophores such as IRDye-800, translation of ∼900-nm NIR molecular imaging of PD-L1 or EGFR greatly enhanced tumor-to-normal tissue ratio up to ∼20 from ∼5 and improved tumor margin localization. Further, deep learning greatly improved in vivo noninvasive NIR-II light-sheet microscopy (LSM) in resolution and signal/background. NIR imaging equipped with deep learning could facilitate basic biomedical research and empower clinical diagnostics and imaging-guided surgery in the clinic.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hielscher, A. H., A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan. "Near-Infrared Diffuse Optical Tomography." Disease Markers 18, no. 5-6 (2002): 313–37. http://dx.doi.org/10.1155/2002/164252.

Повний текст джерела
Анотація:
Diffuse optical tomography (DOT) is emerging as a viable new biomedical imaging modality. Using near-infrared (NIR) light, this technique probes absorption as well as scattering properties of biological tissues. First commercial instruments are now available that allow users to obtain cross-sectional and volumetric views of various body parts. Currently, the main applications are brain, breast, limb, joint, and fluorescence/bioluminescence imaging. Although the spatial resolution is limited when compared with other imaging modalities, such as magnetic resonance imaging (MRI) or X-ray computerized tomography (CT), DOT provides access to a variety of physiological parameters that otherwise are not accessible, including sub-second imaging of hemodynamics and other fast-changing processes. Furthermore, DOT can be realized in compact, portable instrumentation that allows for bedside monitoring at relatively low cost. In this paper, we present an overview of current state-of-the -art technology, including hardware and image-reconstruction algorithms, and focus on applications in brain and joint imaging. In addition, we present recent results of work on optical tomographic imaging in small animals.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gao, Jinhao, Xiaoyuan Chen, and Zhen Cheng. "Near-Infrared Quantum Dots as Optical Probes for Tumor Imaging." Current Topics in Medicinal Chemistry 10, no. 12 (August 1, 2010): 1147–57. http://dx.doi.org/10.2174/156802610791384162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Murtagh, Julie, Daniel O. Frimannsson, and Donal F. O’Shea. "Azide Conjugatable and pH Responsive Near-Infrared Fluorescent Imaging Probes." Organic Letters 11, no. 23 (December 3, 2009): 5386–89. http://dx.doi.org/10.1021/ol902140v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Josephson, Lee, Moritz F. Kircher, Umar Mahmood, Yi Tang, and Ralph Weissleder. "Near-Infrared Fluorescent Nanoparticles as Combined MR/Optical Imaging Probes." Bioconjugate Chemistry 13, no. 3 (May 2002): 554–60. http://dx.doi.org/10.1021/bc015555d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Haiyan, Juan Zhao, Min Zhang, Haibo Yang, Yuxiang Ma, and Yueqing Gu. "MUC1 Aptamer-Based Near-Infrared Fluorescence Probes for Tumor Imaging." Molecular Imaging and Biology 17, no. 1 (July 9, 2014): 38–48. http://dx.doi.org/10.1007/s11307-014-0763-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Spatarelu, Catalina-Paula, Austin Van Namen, Sidhartha Jandhyala, and Geoffrey P. Luke. "Fluorescent Phase-Changing Perfluorocarbon Nanodroplets as Activatable Near-Infrared Probes." International Journal of Molecular Sciences 23, no. 13 (June 30, 2022): 7312. http://dx.doi.org/10.3390/ijms23137312.

Повний текст джерела
Анотація:
The sensitivity of fluorescence imaging is limited by the high optical scattering of tissue. One approach to improve sensitivity to small signals is to use a contrast agent with a signal that can be externally modulated. In this work, we present a new phase-changing perfluorocarbon nanodroplet contrast agent loaded with DiR dye. The nanodroplets undergo a liquid-to-gas phase transition when exposed to an externally applied laser pulse. This results in the unquenching of the encapsulated dye, thus increasing the fluorescent signal, a phenomenon that can be characterized by an ON/OFF ratio between the fluorescence of activated and nonactivated nanodroplets, respectively. We investigate and optimize the quenching/unquenching of DiR upon nanodroplets’ vaporization in suspension, tissue-mimicking phantoms and a subcutaneous injection mouse model. We also demonstrate that the vaporized nanodroplets produce ultrasound contrast, enabling multimodal imaging. This work shows that these nanodroplets could be applied to imaging applications where high sensitivity is required.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lee, A. K., K. A. Camphausen, C. Becker, N. Donoghue, A. Joussen, J. Folkman, and P. Hogg. "Tumor imaging using near-infrared labeled probes against proliferating endothelial cells." International Journal of Radiation Oncology*Biology*Physics 51, no. 3 (November 2001): 77. http://dx.doi.org/10.1016/s0360-3016(01)01966-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ding, Shengli, Randall Eric Blue, Yijing Chen, Brooks Scull, Pauline Kay Lund, and Douglas Morgan. "Molecular Imaging of Gastric Neoplasia with Near-Infrared Fluorescent Activatable Probes." Molecular Imaging 11, no. 6 (November 2012): 7290.2012.00014. http://dx.doi.org/10.2310/7290.2012.00014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hu, Xiang, Qian Wang, Yang Liu, Hongguang Liu, Chunxia Qin, Kai Cheng, William Robinson, et al. "Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes." Biomaterials 35, no. 26 (August 2014): 7511–21. http://dx.doi.org/10.1016/j.biomaterials.2014.05.042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Liu, Yuxin, Qi Jia, and Jing Zhou. "Recent Advance in Near‐Infrared (NIR) Imaging Probes for Cancer Theranostics." ADVANCED THERAPEUTICS 1, no. 8 (August 23, 2018): 1800055. http://dx.doi.org/10.1002/adtp.201800055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Achilefu, Samuel. "The Insatiable Quest for Near-Infrared Fluorescent Probes for Molecular Imaging." Angewandte Chemie International Edition 49, no. 51 (November 18, 2010): 9816–18. http://dx.doi.org/10.1002/anie.201005684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zheng, Gang, Yu Chen, Xavier Intes, Britton Chance, and Jerry D. Glickson. "Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection." Journal of Porphyrins and Phthalocyanines 08, no. 09 (September 2004): 1106–17. http://dx.doi.org/10.1142/s1088424604000477.

Повний текст джерела
Анотація:
Synergistic efforts in the developments of molecular specific imaging probes and advancements of optical imaging technologies (including the novel instrumentation and imaging algorithms) that lead to a new tool for early disease diagnosis and drug discovery are described.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Zhang, Jun, Junfeng Su, Li Liu, Yalou Huang, and Ralph P. Mason. "Evaluation of Red CdTe and Near Infrared CdHgTe Quantum Dots by Fluorescent Imaging." Journal of Nanoscience and Nanotechnology 8, no. 3 (March 1, 2008): 1155–59. http://dx.doi.org/10.1166/jnn.2008.18163.

Повний текст джерела
Анотація:
Non-invasive fluorescent imaging of preclinical animal models in vivo is a rapidly developing field with new emerging technologies and techniques. Quantum dot (QD) fluorescent probes with longer emission wavelengths in red and near infrared (NIR) emission ranges are more amenable to deep-tissue imaging, because both scattering and autofluorescence are reduced as wavelengths are increased. We have designed and synthesized red CdTe and NIR CdHgTe QDs for fluorescent imaging. We demonstrated fluorescent imaging by using CdTe and CdHgTe QDs as fluorescent probes both in vitro and in vivo. Both CdTe and CdHgTe QDs provided sensitive detection over background autofluorescence in tissue biopsies and live mice, making them attractive probes for in vivo imaging extending into deep tissues or whole animals. The studies suggest a basis of using QD-antibody conjugates to detect membrane antigens.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Yang, Fan, Qingzhe Zhang, Shengyun Huang, and Dongling Ma. "Recent advances of near infrared inorganic fluorescent probes for biomedical applications." Journal of Materials Chemistry B 8, no. 35 (2020): 7856–79. http://dx.doi.org/10.1039/d0tb01430c.

Повний текст джерела
Анотація:
Near infrared (NIR)-excitable and NIR-emitting probes have fuelled advances in biomedical applications owing to their power in enabling deep tissue imaging, offering high image contrast and reducing phototoxicity.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yao, Zi, Donald R. Caldwell, Anna C. Love, Bethany Kolbaba-Kartchner, Jeremy H. Mills, Martin J. Schnermann, and Jennifer A. Prescher. "Coumarin luciferins and mutant luciferases for robust multi-component bioluminescence imaging." Chemical Science 12, no. 35 (2021): 11684–91. http://dx.doi.org/10.1039/d1sc03114g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Jeong, Sanghwa, Darwin Yang, Abraham G. Beyene, Jackson Travis Del Bonis-O’Donnell, Anneliese M. M. Gest, Nicole Navarro, Xiaoqi Sun, and Markita P. Landry. "High-throughput evolution of near-infrared serotonin nanosensors." Science Advances 5, no. 12 (December 2019): eaay3771. http://dx.doi.org/10.1126/sciadv.aay3771.

Повний текст джерела
Анотація:
Imaging neuromodulation with synthetic probes is an emerging technology for studying neurotransmission. However, most synthetic probes are developed through conjugation of fluorescent signal transducers to preexisting recognition moieties such as antibodies or receptors. We introduce a generic platform to evolve synthetic molecular recognition on the surface of near-infrared fluorescent single-wall carbon nanotube (SWCNT) signal transducers. We demonstrate evolution of molecular recognition toward neuromodulator serotonin generated from large libraries of ~6.9 × 1010 unique ssDNA sequences conjugated to SWCNTs. This probe is reversible and produces a ~200% fluorescence enhancement upon exposure to serotonin with a Kd = 6.3 μM, and shows selective responsivity over serotonin analogs, metabolites, and receptor-targeting drugs. Furthermore, this probe remains responsive and reversible upon repeat exposure to exogenous serotonin in the extracellular space of acute brain slices. Our results suggest that evolution of nanosensors could be generically implemented to develop other neuromodulator probes with synthetic molecular recognition.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Li, Dong, Jie Pan, Shuyu Xu, Shiying Fu, Chengchao Chu, and Gang Liu. "Activatable Second Near-Infrared Fluorescent Probes: A New Accurate Diagnosis Strategy for Diseases." Biosensors 11, no. 11 (November 2, 2021): 436. http://dx.doi.org/10.3390/bios11110436.

Повний текст джерела
Анотація:
Recently, second near-infrared (NIR-II) fluorescent imaging has been widely applied in biomedical diagnosis, due to its high spatiotemporal resolution and deep tissue penetration. In contrast to the “always on” NIR-II fluorescent probes, the activatable NIR-II fluorescent probes have specific targeting to biological tissues, showing a higher imaging signal-to-background ratio and a lower detection limit. Therefore, it is of great significance to utilize disease-associated endogenous stimuli (such as pH values, enzyme existence, hypoxia condition and so on) to activate the NIR-II probes and achieve switchable fluorescent signals for specific deep bioimaging. This review introduces recent strategies and mechanisms for activatable NIR-II fluorescent probes and their applications in biosensing and bioimaging. Moreover, the potential challenges and perspectives of activatable NIR-II fluorescent probes are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Park, Chul-Kyu, and Hoonsung Cho. "Improvement in Tracing Quantum Dot-Conjugated Nanospheres forIn VivoImaging by Eliminating Food Autofluorescence." Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/894353.

Повний текст джерела
Анотація:
Fluorescence imaging using fluorescent probes has demonstrated long-term stability and brightness suitable forin vivodeep-tissue imaging, but it also allows intense background fluorescence associated with food in the near-infrared (IR) range. We investigated effects of changing rodent diet on food autofluorescence, in the presence of quantum dots-conjugated magnetic nanospheres (QD-MNSs). Replacement of a regular rodent diet with a purified diet has great improvement in removing autofluorescence in the near-infrared range ideal forin vivofluorescence imaging. By feeding a purified diet for eliminating ingredients impairing desirable fluorescence signals in the near-IR range, food autofluorescence was clearly eliminated and fluorescence probes, QD-MNSs, introduced by i.v. injection were effectively traced in a mouse by a distinctive signal-to-noise ratio.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

An, Fei-Fei, Mark Chan, Harikrishna Kommidi, and Richard Ting. "Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology." American Journal of Roentgenology 207, no. 2 (August 2016): 266–73. http://dx.doi.org/10.2214/ajr.16.16181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Miki, Koji, Kentaro Kojima, Kazuaki Oride, Hiroshi Harada, Akiyo Morinibu, and Kouichi Ohe. "pH-Responsive near-infrared fluorescent cyanine dyes for molecular imaging based on pH sensing." Chemical Communications 53, no. 55 (2017): 7792–95. http://dx.doi.org/10.1039/c7cc03035e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kuo, Wen-Shuo, Yen-Sung Lin, Ping-Ching Wu, Chia-Yuan Chang, Jiu-Yao Wang, Pei-Chi Chen, Miao-Hsi Hsieh, Hui-Fang Kao, Sheng-Han Lin, and Chan-Chi Chang. "Two-Photon–Near Infrared-II Antimicrobial Graphene-Nanoagent for Ultraviolet–Near Infrared Imaging and Photoinactivation." International Journal of Molecular Sciences 23, no. 6 (March 17, 2022): 3230. http://dx.doi.org/10.3390/ijms23063230.

Повний текст джерела
Анотація:
Nitrogen doping and amino group functionalization through chemical modification lead to strong electron donation. Applying these processes to a large π-conjugated system of graphene quantum dot (GQD)-based materials as electron donors increases the charge transfer efficiency of nitrogen-doped amino acid-functionalized GQDs (amino-N-GQDs), resulting in enhanced two-photon absorption, post-two-photon excitation (TPE) stability, TPE cross-sections, and two-photon luminescence through the radiative pathway when the lifetime decreases and the quantum yield increases. Additionally, it leads to the generation of reactive oxygen species through two-photon photodynamic therapy (PDT). The sorted amino-N-GQDs prepared in this study exhibited excitation-wavelength-independent two-photon luminescence in the near-infrared region through TPE in the near-infrared-II region. The increase in size resulted in size-dependent photochemical and electrochemical efficacy, increased photoluminescence quantum yield, and efficient two-photon PDT. Therefore, the sorted amino-N-GQDs can be applicable as two-photon contrast probes to track and localize analytes in in-depth two-photon imaging executed in a biological environment along with two-photon PDT to eliminate infectious or multidrug-resistant microbes.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zhou, Kaixiang, Hualong Fu, Liang Feng, Mengchao Cui, Jiapei Dai, and Boli Liu. "The synthesis and evaluation of near-infrared probes with barbituric acid acceptors for in vivo detection of amyloid plaques." Chemical Communications 51, no. 58 (2015): 11665–68. http://dx.doi.org/10.1039/c5cc03662c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

LIU, CUICUI, and YUEQING GU. "NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES." Journal of Innovative Optical Health Sciences 06, no. 03 (July 2013): 1350026. http://dx.doi.org/10.1142/s1793545813500260.

Повний текст джерела
Анотація:
The diagnosis of bacterial infections remains a major challenge in medicine. Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is an urgent need for exogenous synthetic probes that can selectively target bacteria. Optical imaging of bacteria in vivo is much less developed than methods such as radioimaging and MRI. Furthermore near-infrared (NIR) dyes with emission wavelengths in the region of 650–900 nm can propagate through two or more centimeters of tissue and may enable deeper tissue imaging if sensitive detection techniques are employed. Here we constructed an antimicrobial peptide fragment UBI29-41-based near-infrared fluorescent imaging probe. The probe is composed of UBI29-41 conjugated to a near infrared dye ICG-Der-02. UBI29-41 is a cationic antimicrobial peptide that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 × 107 cells) in a mouse local infection model using whole animal near-infrared fluorescence imaging. Furthermore, we demonstrate that the UBI29-41-based imaging probe can selectively accumulate within bacteria. The significantly higher accumulation in bacterial infection suggests that UBI29-41-based imaging probe may be a promising imaging agent to detect bacterial infections.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kanagasundaram, Thines, Carsten S. Kramer, Eszter Boros, and Klaus Kopka. "Rhenium and technetium-complexed silicon rhodamines as near-infrared imaging probes for bimodal SPECT- and optical imaging." Dalton Transactions 49, no. 22 (2020): 7294–98. http://dx.doi.org/10.1039/d0dt01084g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Langenbacher, Rachel, Januka Budhathoki-Uprety, Prakrit V. Jena, Daniel Roxbury, Jason Streit, Ming Zheng, and Daniel A. Heller. "Single-Chirality Near-Infrared Carbon Nanotube Sub-Cellular Imaging and FRET Probes." Nano Letters 21, no. 15 (July 23, 2021): 6441–48. http://dx.doi.org/10.1021/acs.nanolett.1c01093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Li, Hang, Xiuting Wang, Yinxing Miao, Qingzhu Liu, Ke Li, Jianguo Lin, Minhao Xie, and Ling Qiu. "Development of biotin-tagged near-infrared fluorescence probes for tumor-specific imaging." Journal of Photochemistry and Photobiology B: Biology 217 (April 2021): 112172. http://dx.doi.org/10.1016/j.jphotobiol.2021.112172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Weissleder, Ralph, Ching-Hsuan Tung, Umar Mahmood, and Alexei Bogdanov. "In vivo imaging of tumors with protease-activated near-infrared fluorescent probes." Nature Biotechnology 17, no. 4 (April 1999): 375–78. http://dx.doi.org/10.1038/7933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

KAMIMURA, Masao. "Polymer Conjugated Near-Infrared Fluorescent Probes for in vivo Imaging." KOBUNSHI RONBUNSHU 75, no. 5 (September 25, 2018): 468–74. http://dx.doi.org/10.1295/koron.2018-0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

KOJIMA, Hirotatsu. "Development of Near-infrared Fluorescent Probes for In vivo Imaging." YAKUGAKU ZASSHI 128, no. 11 (November 1, 2008): 1653–63. http://dx.doi.org/10.1248/yakushi.128.1653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Shen, Suxia, Jingru Yu, Yaomin Lu, Shuchen Zhang, Xuegang Yi, and Baoxiang Gao. "Near-infrared probes based on fluorinated Si-rhodamine for live cell imaging." RSC Advances 7, no. 18 (2017): 10922–27. http://dx.doi.org/10.1039/c6ra28455h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Peck, Evan M., Paul M. Battles, Douglas R. Rice, Felicia M. Roland, Kathryn A. Norquest, and Bradley D. Smith. "Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging." Bioconjugate Chemistry 27, no. 5 (April 27, 2016): 1400–1410. http://dx.doi.org/10.1021/acs.bioconjchem.6b00173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Raymond, Scott B., Jesse Skoch, Ivory D. Hills, Evgueni E. Nesterov, Timothy M. Swager, and Brian J. Bacskai. "Smart optical probes for near-infrared fluorescence imaging of Alzheimer’s disease pathology." European Journal of Nuclear Medicine and Molecular Imaging 35, S1 (January 31, 2008): 93–98. http://dx.doi.org/10.1007/s00259-007-0708-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Li, Cong, Tiffany R. Greenwood, Zaver M. Bhujwalla, and Kristine Glunde. "Synthesis and Characterization of Glucosamine-Bound Near-Infrared Probes for Optical Imaging." Organic Letters 8, no. 17 (August 2006): 3623–26. http://dx.doi.org/10.1021/ol060783e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Beyene, Abraham G., Kristen Delevich, Linda Wilbrecht, and Markita P. Landry. "(Invited) Near-Infrared Optical Probes for Imaging Neuromodulators with High Spatiotemporal Resolution." ECS Meeting Abstracts MA2020-01, no. 6 (May 1, 2020): 636. http://dx.doi.org/10.1149/ma2020-016636mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Beyene, Abraham. "(Invited) Near Infrared Optical Probes for Imaging Neuromodulators with High Spatiotemporal Resolution." ECS Meeting Abstracts MA2020-02, no. 67 (November 23, 2020): 3418. http://dx.doi.org/10.1149/ma2020-02673418mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Huang, Jiaguo, and Kanyi Pu. "Activatable Molecular Probes for Second Near‐Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging." Angewandte Chemie 132, no. 29 (April 2020): 11813–27. http://dx.doi.org/10.1002/ange.202001783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Huang, Jiaguo, and Kanyi Pu. "Activatable Molecular Probes for Second Near‐Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging." Angewandte Chemie International Edition 59, no. 29 (April 2020): 11717–31. http://dx.doi.org/10.1002/anie.202001783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Tong, Hongjuan, Kaiyan Lou, and Wei Wang. "Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer׳s disease." Acta Pharmaceutica Sinica B 5, no. 1 (January 2015): 25–33. http://dx.doi.org/10.1016/j.apsb.2014.12.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Korotcov, Alexandru V., Yunpeng Ye, Yue Chen, Fayun Zhang, Sophia Huang, Stephen Lin, Rajagopalan Sridhar, Samuel Achilefu, and Paul C. Wang. "Glucosamine-Linked Near-Infrared Fluorescent Probes for Imaging of Solid Tumor Xenografts." Molecular Imaging and Biology 14, no. 4 (October 5, 2011): 443–51. http://dx.doi.org/10.1007/s11307-011-0520-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Dong, Baoli, Kaibo Zheng, Yonghe Tang, and Weiying Lin. "Development of green to near-infrared turn-on fluorescent probes for the multicolour imaging of nitroxyl in living systems." Journal of Materials Chemistry B 4, no. 7 (2016): 1263–69. http://dx.doi.org/10.1039/c5tb02073e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Liu, Jianan, Limin Pan, Chunfeng Shang, Bin Lu, Rongjie Wu, Yun Feng, Weiyu Chen, et al. "A highly sensitive and selective nanosensor for near-infrared potassium imaging." Science Advances 6, no. 16 (April 2020): eaax9757. http://dx.doi.org/10.1126/sciadv.aax9757.

Повний текст джерела
Анотація:
Potassium ion (K+) concentration fluctuates in various biological processes. A number of K+ probes have been developed to monitor such fluctuations through optical imaging. However, the currently available K+ probes are far from being sensitive enough in detecting physiological fluctuations in living animals. Furthermore, the monitoring of deep tissues is not applicable because of short-wavelength excitation prevailingly used so far. Here, we report a highly sensitive and selective nanosensor for near-infrared (NIR) K+ imaging in living cells and animals. The nanosensor is constructed by encapsulating upconversion nanoparticles (UCNPs) and a commercial K+ indicator in the hollow cavity of mesoporous silica nanoparticles, followed by coating a K+-selective filter membrane. The membrane adsorbs K+ from the medium and filters out interfering cations. The UCNPs convert NIR to ultraviolet light, which excites the K+ indicator, thus allowing the detection of the fluctuations of K+ concentration in cultured cells and intact mouse brains.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Zhang, Jingtuo, Mu Yang, Cong Li, Nethaniah Dorh, Fei Xie, Fen-Tair Luo, Ashutosh Tiwari, and Haiying Liu. "Near-infrared fluorescent probes based on piperazine-functionalized BODIPY dyes for sensitive detection of lysosomal pH." Journal of Materials Chemistry B 3, no. 10 (2015): 2173–84. http://dx.doi.org/10.1039/c4tb01878h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Feng, Miao, Yanxing Wang, Bi Lin, Xiangrong Peng, Ying Yuan, Xiaofeng Tao, and Ruichan Lv. "Degradable pH-responsive NIR-II imaging probes based on a polymer-lanthanide composite for chemotherapy." Dalton Transactions 49, no. 27 (2020): 9444–53. http://dx.doi.org/10.1039/d0dt02042g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Yan, Jin-wu, Jia-ying Zhu, Kai-xiang Zhou, Jin-sheng Wang, Hui-ya Tan, Zhong-yong Xu, Shuo-bin Chen, Yu-ting Lu, Meng-chao Cui та Lei Zhang. "Neutral merocyanine dyes: for in vivo NIR fluorescence imaging of amyloid-β plaques". Chemical Communications 53, № 71 (2017): 9910–13. http://dx.doi.org/10.1039/c7cc05056a.

Повний текст джерела
Анотація:
Two neutral merocyanine-based near-infrared fluorescent probes were for the first time developed through rational engineering of the classical cationic cyanine scaffold IR-780 for in vivo imaging of amyloid-β plaques.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії