Добірка наукової літератури з теми "Near-field microwave microscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Near-field microwave microscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Near-field microwave microscopy"

1

Knoll, B., F. Keilmann, A. Kramer, and R. Guckenberger. "Contrast of microwave near-field microscopy." Applied Physics Letters 70, no. 20 (May 19, 1997): 2667–69. http://dx.doi.org/10.1063/1.119255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reznik, A. N., and M. A. Galin. "Wave effects in near-field microwave microscopy." Bulletin of the Russian Academy of Sciences: Physics 78, no. 12 (December 2014): 1367–73. http://dx.doi.org/10.3103/s1062873814120387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cortés, R., V. Coello, R. Arriaga, and N. Elizondo. "Collection mode near-field scanning microwave microscopy." Optik 125, no. 10 (May 2014): 2400–2404. http://dx.doi.org/10.1016/j.ijleo.2013.10.085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gao, C., and X. D. Xiang. "Quantitative microwave near-field microscopy of dielectric properties." Review of Scientific Instruments 69, no. 11 (November 1998): 3846–51. http://dx.doi.org/10.1063/1.1149189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Farina, Marco, Davide Mencarelli, Andrea Di Donato, Giuseppe Venanzoni, and Antonio Morini. "Calibration Protocol for Broadband Near-Field Microwave Microscopy." IEEE Transactions on Microwave Theory and Techniques 59, no. 10 (October 2011): 2769–76. http://dx.doi.org/10.1109/tmtt.2011.2161328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Imtiaz, Atif, Marc Pollak, Steven M. Anlage, John D. Barry, and John Melngailis. "Near-field microwave microscopy on nanometer length scales." Journal of Applied Physics 97, no. 4 (February 15, 2005): 044302. http://dx.doi.org/10.1063/1.1844614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Belichenko, Viktor, Andrey Zapasnoy, and Aleksandr Mironchev. "Near-Field Interference Microwave Diagnostics of Cultural Plants and Wood Materials." MATEC Web of Conferences 155 (2018): 01021. http://dx.doi.org/10.1051/matecconf/201815501021.

Повний текст джерела
Анотація:
A schematic solution of the near-field interference microwave microscopy technology is discussed. This solution is implemented in the form of a maximally simplified microscope structure. Testing was conducted to determine the capabilities of this microscope. It is shown that technology can be used to solve a number of hygroscopy and defectoscopy problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Betzig, E., M. Isaacson, H. Barshatzky, K. Lin, and A. Lewis. "Progress in near-field scanning optical microscopy (NSOM)." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 436–37. http://dx.doi.org/10.1017/s0424820100104248.

Повний текст джерела
Анотація:
The concept of near field scanning optical microscopy was first described more than thirty years ago1 almost two decades before the validity of the technique was verified experimentally for electromagnetic radiation of 3cm wavelength.2 The extension of the method to the visible region of the spectrum took another decade since it required the development of micropositioning and aperture fabrication on a scale five orders of magnitude smaller than that used for the microwave experiments. Since initial reports on near field optical imaging8-6, there has been a growing effort by ourselves6 and other groups7 to extend the technology and develop the near field scanning optical microscope (NSOM) into a useful tool to complement conventional (i.e., far field) scanning optical microscopy (SOM), scanning electron microscopy (SEM) and scanning tunneling microscopy. In the context of this symposium on “Microscopy Without Lenses”, NSOM can be thought of as an addition to the exploding field of scanned tip microscopy although we did not originally conceive it as such.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gao, Chen, Tao Wei, Fred Duewer, Yalin Lu, and X. D. Xiang. "High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope." Applied Physics Letters 71, no. 13 (September 29, 1997): 1872–74. http://dx.doi.org/10.1063/1.120444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bakli, Hind, Kamel Haddadi, and Tuami Lasri. "Interferometric Technique for Scanning Near-Field Microwave Microscopy Applications." IEEE Transactions on Instrumentation and Measurement 63, no. 5 (May 2014): 1281–86. http://dx.doi.org/10.1109/tim.2013.2296416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Near-field microwave microscopy"

1

Cordoba, Erazo Maria Fernanda. "Near-field Microwave Microscopy for Surface and Subsurface Characterization of Materials." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5930.

Повний текст джерела
Анотація:
This dissertation presents an investigation on the capabilities of Near-Field Microwave Microscopy (NFMM) for the characterization of surface and subsurface materials. Subsurface characterization refers to the detection, differentiation and imaging of dielectric, and metallic features that are coated with an insulating layer. The design, simulation and modeling, and testing of a dielectric resonator (DR)-based NFMM and a coaxial transmission line resonator-based NFMM are discussed in detail in this work. Additionally, materials differentiation and imaging capabilities of each microscope are examined using several bulk samples, liquids, GaAs MMIC circuits, and gold/glass testing patterns. The 5.7 GHz DR-based NFMM uses a microwave probe that consists of a commercial gold-coated probe tip coupled to a DR through a non-resonant microstrip line. The probe is enclosed in an aluminum cavity to preserve the quality factor of the probe (Q=986) and therefore to enhance its sensitivity. The development of a lumped-element model of this DR-based probe is discussed in this work. Characteristics of this design are its high Q and the ability to resolve differences in permittivity (E’r) of insulting bulk samples and liquids as small as ∆E’r =1.75 and ∆E’r =0.04, respectively. The imaging capabilities of this design were verified using a GaAs MMIC phase shifter. It was found that a 10 um wide microstrip line is successfully resolved and that the spatial resolution of the microscope is 50 um when using a tungsten tip with an apex radius of 25 um. Additionally, measurement of the electrical resistance of an additive manufactured resistor was measured using the DR-based NFMM without the need of contacts. The percent difference between the electrical resistance measured using the DR-based NFMM and a four-point probe is 9.6%. Furthermore, the DR-based NFMM allows simultaneous imaging of topography and RF electrical conductivity of rough thick films without the need of an additional distance sensor; this ability is demonstrated for a rough CB028 thick film. The 5GHz coaxial resonator transmission line-based NFMM employs a half-wavelength coaxial transmission line resonator terminated in a sharp tungsten tip as the microwave probe. A quartz-tuning fork based distance following feedback system is integrated with the microwave probe in order for the NFMM to operate in non-contact mode. The Q of the probe is degraded by 30% (Q=55) due to the presence of the quartz tuning fork. Despite the low Q, this NFMM is able to differentiate several insulating bulk samples (3.8 < E’r < 25) even if they are coated with an insulating layer of thickness similar to the apex radius of the tungsten tip. Finally, the coaxial resonator transmission line-based NFMM is able to image subsurface permittivity distribution of a flexible polymer-composite PDMS-Ba0.55Sr0.45TiO3 49% which is coated with 10 um thick parylene-C layer. Measurements performed at a tip-sample distance of 100 nm reveal that within an area of 50 um x 50 um, the relative permittivity of the polymer-composite is not constant but varies between 6.63 and 11.78.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gu, Sijia. "Contribution to broadband local characterization of materials by near-field microwave microscopy." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10175/document.

Повний текст джерела
Анотація:
Les microscopes champ proche micro-ondes sont des instruments émergents pour la caractérisation de matériaux. Dans ce travail, un microscope champ proche micro-ondes fait maison est d'abord décrit et analysé en termes de résolution et de largeur de bande de fréquences de fonctionnement. Ensuite, il est mis en œuvre pour la caractérisation d'une grande variété de matériaux tels que par exemple des métaux, des semi-conducteurs, des diélectriques, des liquides et des nanomatériaux 2D. Le système intégre un interférométre pour améliorer la sensibilité de la mesure pour des fréquences de fonctionnement couvrant la bande 2-18 GHz. La sensibilité et les différents modes de fonctionnement disponibles (contact, sans contact, environnement liquide) permettent d'adresser une grande variété de domaines d'applications. La résolution latérale obtenue par cet instrument est plus petite de plusieurs ordres de grandeur que la longueur d'onde de fonctionnement, ouvrant ainsi la voie à une caractérisation locale. Les propriétés électromagnétiques des matériaux ont été extraites en utilisant la méthode de perturbation et celle de la ligne de transmission. En particulier, les propriétés diélectriques de solutions salines aqueuses et l’impédance complexe du graphène ont été étudiées dans une large bande de fréquence. Ce microscope champ proche micro-ondes basé sur une méthode interférométrique qui permet une analyse quantitative des propriétés des matériaux de manière non-destructive peut adresser un grand éventail d’applications dans de nombreux domaines scientifiques. Enfin, l’ensemble des résultats montre que potentiellement la microscopie champ proche micro-ondes dispose des atouts pour devenir un outil de métrologie important pour la caractérisation en micro- et nano-électronique
Near-field microwave microscopes are emerging instruments for materials characterization. In this work, a home-made near-field microwave microscope is first described and analyzed in terms of resolution performance and frequency band of operation. Then, it is applied to the characterization of a large variety of materials such as metals, semiconductors, dielectrics, liquids and 2D nanomaterials. The system is based on an interferometric technique to improve the measurement sensitivity in the entire frequency range of operation spanning from 2 to 18 GHz. The sensitivity and the different operating modes available (contact, non-contact, liquid environment) allow addressing a large variety of application fields. The instrument allows a sub-wavelength lateral resolution which is more than two orders of magnitude smaller than the operating wavelength, opening the way to a local characterization. The cavity perturbation and transmission line approaches have been used to extract the electromagnetic properties of materials. In particular dielectric properties of saline aqueous solutions and complex impedance of graphene have been investigated in a broad frequency band. It provides a quantitative analysis of material properties in a non-destructive manner to address numerous applications in many scientific fields. Finally, all the results together show that the interferometer-based near-field microwave microscope has the potential to become an important metrology tool for characterizations in micro- and nano-electronics
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schlegel, Jennifer Lynn. "Imaging the spatial variation of dielectric constant in materials using microwave near field microscopy." Available to US Hopkins community, 2003. http://wwwlib.umi.com/dissertations/dlnow/3080759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ross, Anthony J. III. "Laser Machining and Near Field Microwave Microscopy of Silver Inks for 3D Printable RF Devices." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6944.

Повний текст джерела
Анотація:
3D printable materials for RF devices need improvement in order to satisfy the demand for higher frequency and lower loss performance. Characterization of materials that have shown improvements of conductor conductivity have been performed. By using a laser machining technique the loss of a 3D printed 2.45 GHz microstrip Square Open Loop Resonator (SOLR) bandpass filter has been shown to improve by 2.1dB, along with an increase in bandwidth from 10% to 12.7% when compared to a SOLR filter that has not been laser machined. Both laser machined and microwaved silver inks have been mapped for conductivity using a Near Field Microwave Microscope (NFMM) and have shown improvement of conductivity compared to inks that have been cured using standard methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haenssler, Olaf Christian. "Multimodal sensing and imaging technology by integrated scanning electron, force, and near-field microwave microscopy and its application to submicrometer studies." Thesis, Lille, 2018. http://www.theses.fr/2018LIL1I006.

Повний текст джерела
Анотація:
La combinaison de plusieurs procédés d’imagerie et de mesure permet d’obtenir des ensembles de données complémentaires et parfois uniques. A l’aide d’une technique hybride de microscopie présentant des modalités de mesure différentes et des enregistrements synchrones, on peut recueillir des informations complémentaires sur des échantillons à l’échelle nanométrique. De plus, l’intégration de procédés nanorobotiques et de logiciels open-source permet une approche technologique pour la recherche sur les semi-conducteurs et les sciences des matériaux. Ce travail démontre le potentiel d’une telle technologie. Ce démonstrateur fonctionne dans la chambre d‘un MEB et sert de plateforme technologique dans laquelle sont intégrés différentes modalités, technologies et procédés. Un AFM basé sur un interféromètre optique compact permet l’imagerie de la topographie de surface tandis qu’un microscope à micro-ondes à balayage enregistre les caractéristiques électromagnétiques dans la gamme de fréquence des micro-ondes, le tout opérant dans le même MEB. L’engin est contrôlé par un ensemble de logiciels qui est optimisé pour la nanorobotique basée sur l‘imagerie. Ce démonstrateur technologique permet d’observer en direct la région d’intérêt à l’aide du microscope électronique tandis qu’est effectuée en champ proche la caractérisation de la surface de l’échantillon par intermédiaire des micro-ondes évanescentes et des forces intermoléculaires. Ensuite, est présenté un standard multimodal de test et qui valide la fonctionnalité de l’instrument démonstrateur. Le présent travail est complété par une analyse électrique de capacités MOS ainsi que leur approximation destinée au calibrage
Various disciplines of micro- and nanotechnology requires combinatorial tools for the investigation, manipulation and transport of materials in the submicrometer range. The coupling of multiple sensing and imaging techniques allows for obtaining complementary and often unique datasets of samples under test. By means of an integrated microscopy technique with different modalities, it is possible to gain multiple information about nanoscale samples by recording at the same time. The expansion with nanorobotics and an open-source software framework, leads to a technology approach for semiconductor research and material science. This work shows the potential of such a multimodal technology approach by focusing on a demonstrator setup. It operates under high-vacuum conditions inside the chamber of a Scanning Electron Microscope and serves as a technology platform by fusing various microscopy modalities, techniques and processes. An Atomic Force Microscope based on a compact, optical interferometer performs imaging of surface topography, and a Scanning Microwave Microscope records electromagnetic properties in the microwave frequency domain, both operating inside an SEM. A software framework controls the instrument. The setup allows for observing with SEM, while imaging and characterizing with interacting evanescent microwaves and intermolecular forces simultaneously. In addition, a multimodal test standard is introduced and subsequently confirms the functionality of the demonstrator. Within this context, the work also includes an electrical analysis of micro-scale MOS capacitors, including an approximation for use in the calibration
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ben, Mbarek Sofiane. "Etude et réalisation d’antennes à concentration de champ pour la génération et la détection locale de champs électromagnétiques." Thesis, Besançon, 2011. http://www.theses.fr/2011BESA2018.

Повний текст джерела
Анотація:
L’objectif de cette thèse est le développement des détecteurs pour la microscopie champproche électromagnétique pour deux domaines fréquentiels. Pour le domaine des microondesnous présentons des micro-antennes non conventionnelles basées sur un guidagecoplanaire et l’effet de pointe. Nous pr´esentons les différentes étapes de la conceptionet de la réalisation avec les techniques de micro-fabrication. L’évaluation de leur performancea été obtenue avec une confrontation des résultats de mesure et de cartographie surdes éléments passifs et ceux d’une modélisation d’intégration finie. Pour le domaine desTérahertz, nous avons réalisé des micro-bolométres à température ambiante. Dans le butd’améliorer l’absorption de ces d´etecteurs, leur conception a été basée sur l’étude théoriquede l’absorption d’une onde électromagnétique en incidence normale sur un empilement descouches métalliques et diélectrique. Deux versions ont été réalisées et caractérisées é l’aidedes sources électroniques qui peuvent atteindre 1, 1 THz en continue. Les performancesde ces d´etecteurs en termes de bruit, de sensibilit´e et de temps de r´eponse sont mises enexergue
The objective of this thesis is the development of detectors for near-field microscopy fortwo electromagnetic frequency domains. For microwave domain we present unconventionalmicro-antennas based on coplanar line and point effect. We present the different stages ofthe design and implementation with micro-fabrication technique. The evaluation of theirperformance was obtained with a comparison of measurement results and mapping ofpassive elements and those of a model of finite integration. For the THz domain, we performedroom temperature micro-bolometers. In order to improve the absorption of thesedetectors, their design was based on the theoretical study of the absorption of an electromagneticwave normally incident on a stack of metal and dielectric layers. Two versionswere prepared and characterized using electronic sources that can reach continuous 1,1THz. The performance of these detectors in terms of noise, sensitivity and time responseare highlighted
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Imtiaz, Atif. "Quantitative materials contrast at high spatial resolution with a novel near-field scanning microwave microscope." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2469.

Повний текст джерела
Анотація:
Thesis (Ph. D.) -- University of Maryland, College Park, 2005.
Thesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lin, Tianjun. "Investigation of microwave imaging and local dielectric characterization of materials by using a homemade interferometer-based near-field microwave microscope." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I016/document.

Повний текст джерела
Анотація:
La microscopie champ proche micro-onde, qui fait partie de la famille des microscopies à sonde locale, est envisagée aujourd’hui dans de nombreux domaines d’applications de la physique, de la biologie et des micro et nanotechnologies. Dans ce manuscrit, le microscope micro-onde à champ proche qui est exploité est un instrument développé au laboratoire IEMN bénéficiant d’une grande sensibilité dans une large bande de fréquences de travail [2-18 GHz]. Le potentiel d’applications du microscope est démontré au travers de la caractérisation de liquides avec différentes modalités de caractérisation (sonde en contact, sans contact et en immersion). En particulier, cet outil est mis en œuvre pour la spectroscopie diélectrique de solutions aqueuses de glucose.Cet instrument qui offre une capacité d'imagerie sub-longueur d'onde est également testé pour différentes situations (imagerie de surface et de sub-surface). La résolution d'imagerie ainsi que la précision de mesure sont évaluées puis des méthodes de traitement d'images simples sont proposées pour améliorer la qualité de l'imagerie. Enfin, une piste pour une intégration plus grande de l’instrument, qui consisterait à remplacer l’analyseur de réseau par un dispositif plus compact (type réflectomètre six-ports) est explorée
Near-field microwave microscopes, which belong to the local scanning probe microscopes family, are considered today as advanced characterization tools in many applications areas including physics, biology and micro and nanotechnologies. The near-field microwave microscope that is used in the work and described in this manuscript is an instrument developed at IEMN owning a great sensitivity in a wide operating frequency band [2-18 GHz]. The potential of the microscope in terms of applications is demonstrated through the characterization of liquids with different modalities of characterization (probe in contact, non-contact and immersed in a liquid). In particular, this instrument is investigated for dielectric spectroscopy of aqueous glucose solutions.This characterization tool that offers sub-wavelength imaging capability is also tested in different situations (surface and subsurface imaging). Imaging resolution and measurement accuracy are evaluated and easily implementable processing methods are proposed to improve the quality of imaging. Finally, a solution towards a larger compactness of the instrument is investigated through the replacement of the network analyzer by a more compact device (six-port reflectometer type)
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Qinxin. "Near-field scanning microwave microscopy and its applications in characterization of dielectric materials." 2006. http://etd.nd.edu/ETD-db/theses/available/etd-06272006-163137/.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Notre Dame, 2006.
Thesis directed by Paul J. McGinn for the Department of Chemical and Biomolecular Engineering. "June 2006." Includes bibliographical references (leaves 126-138).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Гордиенко, Ю. Е., И. Н. Бондаренко, and Н. И. Слипченко. "Biological objects parameters meter based on microwave microscope with coaxial resonant sensor." Thesis, 2010. http://openarchive.nure.ua/handle/document/6764.

Повний текст джерела
Анотація:
The possibilities to use methods and tools of the nearfield microwave microscopy for studying small-dimension biological objects are analyzed. Methods for optimization of the resonant sensor structure with regard to the objects features are developed, the system of the information signals formation is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Near-field microwave microscopy"

1

Anlage, Steven M., D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood. "Near-Field Microwave Microscopy of Materials Properties." In Microwave Superconductivity, 239–69. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0450-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, Kiejin, Harutyun Melikyan, Arsen Babajanyan, and Barry Friedman. "Near-Field Microwave Microscopy for Nanoscience and Nanotechnology." In Scanning Probe Microscopy in Nanoscience and Nanotechnology 2, 135–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10497-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anlage, Steven M., A. S. Thanawalla, A. P. Zhuravel’, W. Hu, C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, and F. C. Wellstood. "Near-Field Scanning Microwave Microscopy of Superconducting Materials and Devices." In Advances in Superconductivity XI, 1079–84. Tokyo: Springer Japan, 1999. http://dx.doi.org/10.1007/978-4-431-66874-9_253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thomas, Michael E. "Optical Propagation in Water." In Optical Propagation in Linear Media. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195091618.003.0014.

Повний текст джерела
Анотація:
From a basic physics perspective, liquids are the least understood state of matter. Yet this medium plays an important role in the process of life on this planet. The human body is largely composed of liquids, and three-quarters of the surface of the earth is covered by seawater. The main liquid of interest in this chapter, and to the applied scientist and engineer, is water. The importance of understanding the optical properties of water cannot be overemphasized. The chapter appropriately begins with a discussion of the optical properties of pure water, since it is the main ingredient in seawater and in biomedical fluids. Pure water is an insulator with a strong dipole moment and an effective electronic band edge in the ultraviolet near 0.16 μm (62,500 cm−1). Absorption near the band edge shows similar structure to that observed in solids. Water has extensive infrared vibrational bands just as in the gas phase. Dipoles in a liquid can partially rotate in response to the polarization of the incident microscopic field, and Debye relaxation bands occur in the microwave region. A permittivity model for Debye relaxation was presented in Chapter 4 by Eq. 4.60. This is an important mechanism that describes the optical properties of liquids at far-infrared and microwave frequencies.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Near-field microwave microscopy"

1

Leidenberger, Patrick, and Christian Hafner. "Dielectric slot tip for scanning near-field microwave microscope." In Scanning Microscopy 2010, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2010. http://dx.doi.org/10.1117/12.853727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gu, Sijia, Kamel Haddadi, and Tuami Lasri. "Near-field microwave microscopy for liquid characterization." In 2014 44th European Microwave Conference (EuMC). IEEE, 2014. http://dx.doi.org/10.1109/eumc.2014.6986512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Usanov, D. A., and A. V. Skripal. "Near-field microwave microscopy. Capabilities. Application areas." In 2012 19th International Conference on Microwaves, Radar & Wireless Communications (MIKON 2012). IEEE, 2012. http://dx.doi.org/10.1109/mikon.2012.6233532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tang, Bo, Yang Baoguo, Nian Fushun, and Hu Peijun. "Review of Near-Field Microwave Microscopy Technology." In 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). IEEE, 2021. http://dx.doi.org/10.1109/icccs52626.2021.9449267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Berweger, Samuel, Paul T. Blanchard, Rebecca C. Quardokus, Frank W. DelRio, T. Mitch Wallis, Pavel Kabos, Sergiy Krylyuk, and Albert V. Davydov. "Near-field microwave microscopy of one-dimensional nanostructures." In 2016 IEEE/MTT-S International Microwave Symposium (IMS). IEEE, 2016. http://dx.doi.org/10.1109/mwsym.2016.7540184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gu, Sijia, Tianjun Lin, and Tuami Lasri. "Materials characterization by near-field scanning microwave microscopy." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7734685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ben Mbarek, Sofiane, Fethi Choubani, and Bernard Cretin. "Near-field microwave CPW antenna for scanning microscopy." In 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017. http://dx.doi.org/10.23919/eucap.2017.7928768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Farina, Marco, Andrea Di Donato, Davide Mencarelli, Giuseppe Venanzoni, Antonio Morini, and Tiziana Pietrangelo. "Imaging of biological structures by Near-Field Microwave Microscopy." In 2015 European Microwave Conference (EuMC 2015). IEEE, 2015. http://dx.doi.org/10.1109/eumc.2015.7345851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bakli, H., K. Haddadi, and T. Lasri. "Interferometric technique for scanning near-field microwave microscopy applications." In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2013. http://dx.doi.org/10.1109/i2mtc.2013.6555703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Haddadi, Kamel, Petr Polovodov, Didier Theron, and Gilles Dambrine. "Quantitative Error Analysis in Near-Field Scanning Microwave Microscopy." In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2018. http://dx.doi.org/10.1109/marss.2018.8481160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії