Добірка наукової літератури з теми "Navier-Stokes-Cahn-Hilliard model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Navier-Stokes-Cahn-Hilliard model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Navier-Stokes-Cahn-Hilliard model"
Li, Xiaoli, and Jie Shen. "On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case." Mathematical Models and Methods in Applied Sciences 30, no. 12 (October 19, 2020): 2263–97. http://dx.doi.org/10.1142/s0218202520500438.
Повний текст джерелаMedjo, T. Tachim. "A Cahn-Hilliard-Navier-Stokes model with delays." Discrete and Continuous Dynamical Systems - Series B 21, no. 8 (September 2016): 2663–85. http://dx.doi.org/10.3934/dcdsb.2016067.
Повний текст джерелаMedjo, T. "Robust control of a Cahn-Hilliard-Navier-Stokes model." Communications on Pure and Applied Analysis 15, no. 6 (September 2016): 2075–101. http://dx.doi.org/10.3934/cpaa.2016028.
Повний текст джерелаKotschote, Matthias, and Rico Zacher. "Strong solutions in the dynamical theory of compressible fluid mixtures." Mathematical Models and Methods in Applied Sciences 25, no. 07 (April 14, 2015): 1217–56. http://dx.doi.org/10.1142/s0218202515500311.
Повний текст джерелаBoyer, Franck, and Sebastian Minjeaud. "Hierarchy of consistent n-component Cahn–Hilliard systems." Mathematical Models and Methods in Applied Sciences 24, no. 14 (October 16, 2014): 2885–928. http://dx.doi.org/10.1142/s0218202514500407.
Повний текст джерелаLAM, KEI FONG, and HAO WU. "Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis." European Journal of Applied Mathematics 29, no. 4 (October 9, 2017): 595–644. http://dx.doi.org/10.1017/s0956792517000298.
Повний текст джерелаLi, Xiaoli, and Jie Shen. "On fully decoupled MSAV schemes for the Cahn–Hilliard–Navier–Stokes model of two-phase incompressible flows." Mathematical Models and Methods in Applied Sciences 32, no. 03 (January 31, 2022): 457–95. http://dx.doi.org/10.1142/s0218202522500117.
Повний текст джерелаLasarzik, Robert. "Analysis of a thermodynamically consistent Navier–Stokes–Cahn–Hilliard model." Nonlinear Analysis 213 (December 2021): 112526. http://dx.doi.org/10.1016/j.na.2021.112526.
Повний текст джерелаDeugoue, Gabriel, Boris Jidjou Moghomye, and Theodore Tachim Medjo. "Splitting-up scheme for the stochastic Cahn–Hilliard Navier–Stokes model." Stochastics and Dynamics 21, no. 01 (March 18, 2020): 2150005. http://dx.doi.org/10.1142/s0219493721500052.
Повний текст джерелаChen, Jie, Shuyu Sun, and Zhangxin Chen. "Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media." Advances in Mechanical Engineering 6 (January 1, 2014): 871021. http://dx.doi.org/10.1155/2014/871021.
Повний текст джерелаДисертації з теми "Navier-Stokes-Cahn-Hilliard model"
Pi, Haohong. "Analyse expérimentale-numérique de l'écoulement diphasique dans des modèles de milieu poreux sur puce microfluidique." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0126.
Повний текст джерелаThe core-flood experiments are the usual method used to study the immiscible biphasic flow. However, beside reproducibility aspects, a significant drawback is that with these black box experiments, we cannot observe and capture key phenomena at the pore scale, including interfacial interactions and details about mobilization of the trapped oil (e.g. size and distribution of residual ganglia). This is why microfluidic micromodel devices are now extensively used in lab EOR experiments. They preserve the structural details of the rock while offering advantages such as easy cleaning and repeatability. Visual tracking of fluids displacement is particularly important as it can provide more details about the behavior of wetting and non-wetting phases in porous media, aiding in targeted strategies to enhance oil recovery rates. This thesis explores the intricate dynamics of immiscible two-phase flows combines microfluidic porous medium models, often referred to as “reservoir-on-a-chip”, with numerical simulations.In our experiments, we used morphological to monitor and record displacement behavior in biphasic flow, systematically studying the effects of different capillary numbers (Ca) and viscosity ratios (M) on the flow mechanisms and the mobilization of residual oil. The results indicated that during waterflooding, displacement exhibited characteristics of viscous fingering at lower Ca and M values. By increasing the flow rate to enhance Ca tenfold, the residual oil showing lateral and even backward invasion of flow paths without significant changes in cluster size. With increasing M, both the cluster size and the maximum cluster size decreased, leading to a more uniform distribution of residual oil and lower Sor. The mobilization mechanism of residual oil manifested as ganglia breakup, with newly formed smaller ganglia being mobilized under higher pressures. The distribution of residual oil clusters is consistent with percolation theory, where the scaling exponent τ is 2.0. All experimental results for Sor and corresponding Ca values collapsed onto the classical Capillary Desaturation Curve (CDC).The experimental findings served as a foundation for developing a numerical model using a phase-field approach. This model, based on the Cahn-Hilliard-Navier-Stokes system of equations, effectively captures the bi-phasic flow behavior of immiscible fluids within confined domains. It incorporates conservation of mass and momentum equations, enhanced by phase separation dynamics and interfacial energy considerations. The numerical simulations, executed on the open-source finite element platform Fenics, align qualitatively and quantitatively with experimental observations, affirming the accuracy of model in predicting fluid behaviors under varied physical conditions, advancing our understanding of pore-scale fluid dynamics. Simulations focus on dissecting the influence of fluid properties and operational conditions on the displacement mechanisms at the pore scale
Sarmiento, Adel. "Structure-Preserving Methods for the Navier-Stokes-Cahn-Hilliard System to Model Immiscible Fluids." Diss., 2017. http://hdl.handle.net/10754/626270.
Повний текст джерелаŘehoř, Martin. "Modely s neostrým rozhraním v teorii směsí." Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-389829.
Повний текст джерелаЧастини книг з теми "Navier-Stokes-Cahn-Hilliard model"
Climent-Ezquerra, Blanca, and Francisco Guillén-González. "Long-Time Behavior of a Cahn-Hilliard-Navier-Stokes Vesicle-Fluid Interaction Model." In SEMA SIMAI Springer Series, 125–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32013-7_8.
Повний текст джерелаHinze, Michael, and Christian Kahle. "A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System." In IFIP Advances in Information and Communication Technology, 348–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36062-6_35.
Повний текст джерелаFeng, Xiaoyu, Jisheng Kou, and Shuyu Sun. "A Novel Energy Stable Numerical Scheme for Navier-Stokes-Cahn-Hilliard Two-Phase Flow Model with Variable Densities and Viscosities." In Lecture Notes in Computer Science, 113–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93713-7_9.
Повний текст джерелаТези доповідей конференцій з теми "Navier-Stokes-Cahn-Hilliard model"
Park, Keunsoo, Carlos A. Dorao, Ezequiel M. Chiapero, and Maria Fernandino. "The Least Squares Spectral Element Method for the Navier-Stokes and Cahn-Hilliard Equations." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-21668.
Повний текст джерелаChen, H., Y. Shu, B. Q. Li, P. Mohanty, and S. Sengupta. "Phase-Field Modeling of Droplet Movement Using the Discontinuous Finite Element Method." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43368.
Повний текст джерелаPark, Keunsoo, Carlos A. Dorao, and Maria Fernandino. "Numerical Solution of Coupled Cahn-Hilliard and Navier-Stokes System Using the Least-Squares Spectral Element Method." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-1008.
Повний текст джерелаTakada, Naoki. "Application of Interface-Tracking Method Based on Phase-Field Model to Numerical Analysis of Isothermal and Thermal Two-Phase Flows." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37567.
Повний текст джерелаDo-Quang, Minh, Go¨ran Stemme, Wouter van der Wijngaart, and Gustav Amberg. "Numerical Simulation of the Passage of Small Liquid Droplets Through a Thin Liquid Film." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62319.
Повний текст джерелаTakada, Naoki, and Akio Tomiyama. "Interface-Tracking Simulation of Two-Phase Flows by Phase-Field Method." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98536.
Повний текст джерелаTakada, Naoki, Masaki Misawa, and Akio Tomiyama. "A Phase-Field Method for Interface-Tracking Simulation of Two-Phase Flows." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77367.
Повний текст джерелаWang, Zhicheng, Xiaoning Zheng, and George Karniadakis. "A Phase Field Method for Numerical Simulation of Boiling Heat Transfer." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20176.
Повний текст джерела