Статті в журналах з теми "Nanospectroscopy"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nanospectroscopy.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nanospectroscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Çulha, Mustafa. "Nanospectroscopy." Analytical and Bioanalytical Chemistry 407, no. 27 (October 5, 2015): 8175–76. http://dx.doi.org/10.1007/s00216-015-9033-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

HIDA, Akira, Yutaka MERA, and Koji MAEDA. "STM-Nanospectroscopy." Hyomen Kagaku 23, no. 4 (2002): 224–32. http://dx.doi.org/10.1380/jsssj.23.224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ulrich, Georg, Emanuel Pfitzner, Arne Hoehl, Jung-Wei Liao, Olga Zadvorna, Guillaume Schweicher, Henning Sirringhaus, et al. "Thermoelectric nanospectroscopy for the imaging of molecular fingerprints." Nanophotonics 9, no. 14 (August 21, 2020): 4347–54. http://dx.doi.org/10.1515/nanoph-2020-0316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractWe present a nanospectroscopic device platform allowing simple and spatially resolved thermoelectric detection of molecular fingerprints of soft materials. Our technique makes use of a locally generated thermal gradient converted into a thermoelectric photocurrent that is read out in the underlying device. The thermal gradient is generated by an illuminated atomic force microscope tip that localizes power absorption onto the sample surface. The detection principle is illustrated using a concept device that contains a nanostructured strip of polymethyl methacrylate (PMMA) defined by electron beam lithography. The platform’s capabilities are demonstrated through a comparison between the spectrum obtained by on-chip thermoelectric nanospectroscopy with a nano-FTIR spectrum recorded by scattering-type scanning near-field optical microscopy at the same position. The subwavelength spatial resolution is demonstrated by a spectral line scan across the edge of the PMMA layer.
4

Suleymanov, Yury. "Single-molecule nanospectroscopy." Science 373, no. 6550 (July 1, 2021): 70.14–72. http://dx.doi.org/10.1126/science.373.6550.70-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Heun, S., Th Schmidt, B. Ressel, E. Bauer, and K. C. Prince. "Nanospectroscopy at Elettra." Synchrotron Radiation News 12, no. 5 (September 1999): 25–29. http://dx.doi.org/10.1080/08940889908261030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meixner, Alfred J. "Nanophotonics, nano-optics and nanospectroscopy." Beilstein Journal of Nanotechnology 2 (August 30, 2011): 499–500. http://dx.doi.org/10.3762/bjnano.2.53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kawata, Satoshi. "Plasmonics for Nanoimaging and Nanospectroscopy." Applied Spectroscopy 67, no. 2 (February 2013): 117–25. http://dx.doi.org/10.1366/12-06861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The science of surface plasmon polaritons, known as “plasmonics,” is reviewed from the viewpoint of applied spectroscopy. In this discussion, noble metals are regarded as reservoirs of photons exhibiting the functions of photon confinement and field enhancement at metallic nanostructures. The functions of surface plasmons are described in detail with an historical overview, and the applications of plasmonics to a variety of industry and sciences are shown. The slow light effect of surface plasmons is also discussed for nanoimaging capability of the near-field optical microscopy and tip-enhanced Raman microscopy. The future issues of plasmonics are also shown, including metamaterials and the extension to the ultraviolet and terahertz regions.
8

Osborne, Ian S. "A cool route to nanospectroscopy." Science 354, no. 6313 (November 10, 2016): 716.4–716. http://dx.doi.org/10.1126/science.354.6313.716-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lekkas, Ioannis, Mark D. Frogley, Timon Achtnich, and Gianfelice Cinque. "Rapidly frequency-tuneable, in-vacuum, and magnetic levitation chopper for fast modulation of infrared light." Review of Scientific Instruments 93, no. 8 (August 1, 2022): 085105. http://dx.doi.org/10.1063/5.0097279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present an in-vacuum mechanical chopper running at high speed and integrated into a magnetic levitating motor for modulating optical beams up to 200 kHz. The compact chopper rotor allows fast acceleration (10 kHz s−1 as standard) for rapid tuning of the modulation frequency, while 1 mm diameter slots provide high optical throughput for larger infrared beams. The modulation performances are assessed using a reference visible laser and the high brightness, broadband, infrared (IR) beam of synchrotron radiation at the MIRIAM beamline B22 at Diamond Light Source, UK. For our application of IR nanospectroscopy, minimizing the temporal jitter on the modulated beam due to chopper manufacturing and control tolerances is essential to limit the noise level in measurements via lock-in detection, while high modulation frequencies are needed to achieve high spatial resolution in photothermal nanospectroscopy. When reaching the maximum chopping frequency of 200 kHz, the jitter was found to be 0.9% peak-to-peak. The described chopper now replaces the standard ball-bearing chopper in our synchrotron-based FTIR photothermal nanospectroscopy system, and we demonstrate improved spectroscopy results on a 200 nm thickness polymer film.
10

Dery, Shahar, Suhong Kim, David Haddad, Albano Cossaro, Alberto Verdini, Luca Floreano, F. Dean Toste, and Elad Gross. "Identifying site-dependent reactivity in oxidation reactions on single Pt particles." Chemical Science 9, no. 31 (2018): 6523–31. http://dx.doi.org/10.1039/c8sc01956h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Döring, Jonathan, Denny Lang, Lukas Wehmeier, Frederik Kuschewski, Tobias Nörenberg, Susanne C. Kehr, and Lukas M. Eng. "Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate." Nanoscale 10, no. 37 (2018): 18074–79. http://dx.doi.org/10.1039/c8nr04081h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Dery, Shahar, Suhong Kim, Daniel Feferman, Hillel Mehlman, F. Dean Toste, and Elad Gross. "Site-dependent selectivity in oxidation reactions on single Pt nanoparticles." Physical Chemistry Chemical Physics 22, no. 34 (2020): 18765–69. http://dx.doi.org/10.1039/d0cp00642d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Site-dependent selectivity in oxidation reactions on Pt nanoparticles was identified by conducting IR nanospectroscopy measurements while using allyl-functionalized N-heterocyclic carbenes (allyl-NHCs) as probe molecules.
13

Pięta, E., C. Paluszkiewicz, and W. M. Kwiatek. "Multianalytical approach for surface- and tip-enhanced infrared spectroscopy study of a molecule–metal conjugate: deducing its adsorption geometry." Physical Chemistry Chemical Physics 20, no. 44 (2018): 27992–8000. http://dx.doi.org/10.1039/c8cp05587d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multianalytical approach to the surface-enhanced infrared absorption spectroscopy (SEIRA) and tip-enhanced infrared nanospectroscopy (TEIRA) studies of α-methyl-dl-tryptophan adsorption geometry on a gold nanoparticle surface.
14

Polito, Raffaella, Mattia Musto, Maria Eleonora Temperini, Laura Ballerini, Michele Ortolani, Leonetta Baldassarre, Loredana Casalis, and Valeria Giliberti. "Infrared Nanospectroscopy of Individual Extracellular Microvesicles." Molecules 26, no. 4 (February 8, 2021): 887. http://dx.doi.org/10.3390/molecules26040887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Extracellular vesicles are membrane-delimited structures, involved in several inter-cellular communication processes, both physiological and pathological, since they deliver complex biological cargo. Extracellular vesicles have been identified as possible biomarkers of several pathological diseases; thus, their characterization is fundamental in order to gain a deep understanding of their function and of the related processes. Traditional approaches for the characterization of the molecular content of the vesicles require a large quantity of sample, thereby providing an average molecular profile, while their heterogeneity is typically probed by non-optical microscopies that, however, lack the chemical sensitivity to provide information of the molecular cargo. Here, we perform a study of individual microvesicles, a subclass of extracellular vesicles generated by the outward budding of the plasma membrane, released by two cultures of glial cells under different stimuli, by applying a state-of-the-art infrared nanospectroscopy technique based on the coupling of an atomic force microscope and a pulsed laser, which combines the label-free chemical sensitivity of infrared spectroscopy with the nanometric resolution of atomic force microscopy. By correlating topographic, mechanical and spectroscopic information of individual microvesicles, we identified two main populations in both families of vesicles released by the two cell cultures. Subtle differences in terms of nucleic acid content among the two families of vesicles have been found by performing a fitting procedure of the main nucleic acid vibrational peaks in the 1000–1250 cm−1 frequency range.
15

Cricenti, A., R. Generosi, P. Perfetti, J. M. Gilligan, N. H. Tolk, C. Coluzza, and G. Margaritondo. "Free-electron-laser near-field nanospectroscopy." Applied Physics Letters 73, no. 2 (July 13, 1998): 151–53. http://dx.doi.org/10.1063/1.121739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Cricenti, A., G. Longo, A. Ustione, V. Mussi, R. Generosi, M. Luce, M. Rinaldi, et al. "Optical nanospectroscopy applications in material science." Applied Surface Science 234, no. 1-4 (July 2004): 374–86. http://dx.doi.org/10.1016/j.apsusc.2004.05.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kurouski, Dmitry, Alexandre Dazzi, Renato Zenobi, and Andrea Centrone. "Infrared and Raman chemical imaging and spectroscopy at the nanoscale." Chemical Society Reviews 49, no. 11 (2020): 3315–47. http://dx.doi.org/10.1039/c8cs00916c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms.
18

Ford, R. G., R. W. Carpenter, M. J. Kim, and K. Sieradzki. "Interfacial Segregation in Al-Cu-Mg Alloys." Microscopy and Microanalysis 3, S2 (August 1997): 547–48. http://dx.doi.org/10.1017/s1431927600009624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The corrosion behavior of Al-Cu-Mg alloys, specifically 2024 alloy (nominally, in weight %, 4.4 Cu, 1.5 Mg, 0.6 Mn), is thought to depend on heterogeneous Cu and Mg distribution through the existence of segregation-dependent local electrochemical cells at the corrosion interface. Few nanospectroscopy measurements of segregation have been made for this or similar alloys. These alloys are precipitation hardenable. The primary precipitating phases are S and the well known Θ(CuAl2) and their metastable intermediates. TEM analysis of aged alloys in this subgroup showed that the orthorhombic S phase (a=4.0Å, b=9.25Å, c=7.15Å) occurred as a thin plate type variant, called S´, within matrix grains and as larger monolithic particles on grain boundaries. Intragranular pricipitate particle densities were heterogeneous particularly near grain boundaries, indicating that strong segregation was present that would result in local electrochemical cells where grain boundaries and large precipitates intersected the alloy surface.HRTEM and nanospectroscopy are used to analyze the structure and chemistry of heterophase interfaces and grain boundaries.
19

Meireles, Leonel M., Ingrid D. Barcelos, Gustavo A. Ferrari, Paulo Alexandre A. de A. Neves, Raul O. Freitas, and Rodrigo G. Lacerda. "Synchrotron infrared nanospectroscopy on a graphene chip." Lab on a Chip 19, no. 21 (2019): 3678–84. http://dx.doi.org/10.1039/c9lc00686a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Here we present a graphene chip designed to nanoscale infrared analysis of materials in liquid environments. We measured the local chemistry of protein clusters in water and a variety of biocompatible liquids.
20

Petrov, Dmitri. "Commentary: Raman nanospectroscopy of single DNA molecules." Journal of Nanophotonics 4, no. 1 (October 1, 2010): 040306. http://dx.doi.org/10.1117/1.3515371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lu, Yi-Hsien, Jonathan M. Larson, Artem Baskin, Xiao Zhao, Paul D. Ashby, David Prendergast, Hans A. Bechtel, Robert Kostecki, and Miquel Salmeron. "Infrared Nanospectroscopy at the Graphene–Electrolyte Interface." Nano Letters 19, no. 8 (July 15, 2019): 5388–93. http://dx.doi.org/10.1021/acs.nanolett.9b01897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Pollard, Benjamin, Francisco C. B. Maia, Markus B. Raschke, and Raul O. Freitas. "Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry." Nano Letters 16, no. 1 (December 21, 2015): 55–61. http://dx.doi.org/10.1021/acs.nanolett.5b02730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Jin, Mingzhou, Feng Lu, and Mikhail A. Belkin. "High-sensitivity infrared vibrational nanospectroscopy in water." Light: Science & Applications 6, no. 7 (July 2017): e17096-e17096. http://dx.doi.org/10.1038/lsa.2017.96.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Datz, Dániel, Gergely Németh, Hajnalka M. Tóháti, Áron Pekker, and Katalin Kamarás. "High-Resolution Nanospectroscopy of Boron Nitride Nanotubes." physica status solidi (b) 254, no. 11 (September 26, 2017): 1700277. http://dx.doi.org/10.1002/pssb.201700277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Levratovsky, Y., and E. Gross. "High spatial resolution mapping of chemically-active self-assembled N-heterocyclic carbenes on Pt nanoparticles." Faraday Discussions 188 (2016): 345–53. http://dx.doi.org/10.1039/c5fd00194c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The properties of many functional materials critically depend on the spatial distribution of surface active sites. In the case of solid catalysts, the geometric and electronic properties of different surface sites will directly impact their catalytic properties. However, the detection of catalytic sites at the single nanoparticle level cannot be easily achieved and most spectroscopic measurements are performed with ensemble-based measurements in which the reactivity is averaged over millions of nanoparticles. It is hereby demonstrated that chemically-functionalized N-heterocyclic carbene molecules can be attached to the surfaces of Pt nanoparticles and utilized as a model system for studying catalytic reactions on single metallic nanoparticles. The formation of a carbene self-assembled layer on the surface of a Pt nanoparticle and its stability under oxidizing conditions were investigated. IR nanospectroscopy measurements detected the chemical properties of surface-anchored molecules on single nanoparticles. A direct correlation was identified between IR nanospectroscopy measurements and macroscopic ATR-IR measurements. These results demonstrate that high spatial resolution mapping of the catalytic reactivity on single nanoparticles can be achieved with this approach.
26

Liu, Yawen, Jing Ren, Ying Pei, Zeming Qi, Min Chen, and Shengjie Ling. "Structural information of biopolymer nanofibrils by infrared nanospectroscopy." Polymer 219 (March 2021): 123534. http://dx.doi.org/10.1016/j.polymer.2021.123534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dazzi, A., F. Glotin, and R. Carminati. "Theory of infrared nanospectroscopy by photothermal induced resonance." Journal of Applied Physics 107, no. 12 (June 15, 2010): 124519. http://dx.doi.org/10.1063/1.3429214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Khatib, Omar, Hans A. Bechtel, Michael C. Martin, Markus B. Raschke, and G. Lawrence Carr. "Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy." ACS Photonics 5, no. 7 (May 11, 2018): 2773–79. http://dx.doi.org/10.1021/acsphotonics.8b00565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wagner, Martin, Devon S. Jakob, Steve Horne, Henry Mittel, Sergey Osechinskiy, Cassandra Phillips, Gilbert C. Walker, Chanmin Su, and Xiaoji G. Xu. "Ultrabroadband Nanospectroscopy with a Laser-Driven Plasma Source." ACS Photonics 5, no. 4 (February 5, 2018): 1467–75. http://dx.doi.org/10.1021/acsphotonics.7b01484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kästner, Bernd, C. Magnus Johnson, Peter Hermann, Mattias Kruskopf, Klaus Pierz, Arne Hoehl, Andrea Hornemann, et al. "Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains." ACS Omega 3, no. 4 (April 12, 2018): 4141–47. http://dx.doi.org/10.1021/acsomega.7b01931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Freitas, Raul O., Christoph Deneke, Francisco C. B. Maia, Helton G. Medeiros, Thierry Moreno, Paul Dumas, Yves Petroff, and Harry Westfahl. "Low-aberration beamline optics for synchrotron infrared nanospectroscopy." Optics Express 26, no. 9 (April 17, 2018): 11238. http://dx.doi.org/10.1364/oe.26.011238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

MERA, Yutaka, Nobuyasu NARUSE, and Koji MAEDA. "Photo-assisted STM and STM Fourier Transform Nanospectroscopy." Hyomen Kagaku 32, no. 12 (2011): 779–84. http://dx.doi.org/10.1380/jsssj.32.779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Makarov, S. V., I. S. Sinev, V. A. Milichko, F. E. Komissarenko, D. A. Zuev, E. V. Ushakova, I. S. Mukhin, et al. "Nanoscale Generation of White Light for Ultrabroadband Nanospectroscopy." Nano Letters 18, no. 1 (December 21, 2017): 535–39. http://dx.doi.org/10.1021/acs.nanolett.7b04542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lipiec, Ewelina, Francesco S. Ruggeri, Carine Benadiba, Anna M. Borkowska, Jan D. Kobierski, Justyna Miszczyk, Bayden R. Wood, et al. "Infrared nanospectroscopic mapping of a single metaphase chromosome." Nucleic Acids Research 47, no. 18 (July 25, 2019): e108-e108. http://dx.doi.org/10.1093/nar/gkz630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.
35

Kaltenecker, Korbinian J., Shreesha Rao D. S., Mattias Rasmussen, Henrik B. Lassen, Edmund J. R. Kelleher, Enno Krauss, Bert Hecht, et al. "Near-infrared nanospectroscopy using a low-noise supercontinuum source." APL Photonics 6, no. 6 (June 1, 2021): 066106. http://dx.doi.org/10.1063/5.0050446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wiemann, Carsten, Marten Patt, Ingo P. Krug, Nils B. Weber, Matthias Escher, Michael Merkel, and Claus M. Schneider. "A New Nanospectroscopy Tool with Synchrotron Radiation: NanoESCA@Elettra." e-Journal of Surface Science and Nanotechnology 9 (2011): 395–99. http://dx.doi.org/10.1380/ejssnt.2011.395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lu, Feng, Mingzhou Jin, and Mikhail A. Belkin. "Tip-enhanced infrared nanospectroscopy via molecular expansion force detection." Nature Photonics 8, no. 4 (January 19, 2014): 307–12. http://dx.doi.org/10.1038/nphoton.2013.373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mattis Hoffmann, Jón, Benedikt Hauer, and Thomas Taubner. "Antenna-enhanced infrared near-field nanospectroscopy of a polymer." Applied Physics Letters 101, no. 19 (November 5, 2012): 193105. http://dx.doi.org/10.1063/1.4766178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Sheremet, E., L. Kim, D. Stepanichsheva, V. Kolchuzhin, A. Milekhin, D. R. T. Zahn, and R. D. Rodriguez. "Localized surface curvature artifacts in tip-enhanced nanospectroscopy imaging." Ultramicroscopy 206 (November 2019): 112811. http://dx.doi.org/10.1016/j.ultramic.2019.112811.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chen, Chao, Shu Chen, Ricardo P. S. M. Lobo, Carlos Maciel-Escudero, Martin Lewin, Thomas Taubner, Wei Xiong, et al. "Terahertz Nanoimaging and Nanospectroscopy of Chalcogenide Phase-Change Materials." ACS Photonics 7, no. 12 (November 30, 2020): 3499–506. http://dx.doi.org/10.1021/acsphotonics.0c01541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bhattarai, Ashish, Zhihua Cheng, Alan G. Joly, Irina V. Novikova, James E. Evans, Zachary D. Schultz, Matthew R. Jones, and Patrick Z. El-Khoury. "Tip-Enhanced Raman Nanospectroscopy of Smooth Spherical Gold Nanoparticles." Journal of Physical Chemistry Letters 11, no. 5 (February 18, 2020): 1795–801. http://dx.doi.org/10.1021/acs.jpclett.0c00217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Barcelos, Ingrid D., Hans A. Bechtel, Christiano J. S. de Matos, Dario A. Bahamon, Bernd Kaestner, Francisco C. B. Maia, and Raul O. Freitas. "Probing Polaritons in 2D Materials with Synchrotron Infrared Nanospectroscopy." Advanced Optical Materials 8, no. 5 (December 9, 2019): 1901091. http://dx.doi.org/10.1002/adom.201901091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

LOCATELLI, A., S. CHERIFI, S. HEUN, M. MARSI, K. ONO, A. PAVLOVSKA, and E. BAUER. "X-RAY MAGNETIC CIRCULAR DICHROISM IMAGING IN A LOW ENERGY ELECTRON MICROSCOPE." Surface Review and Letters 09, no. 01 (February 2002): 171–76. http://dx.doi.org/10.1142/s0218625x02001896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The magnetic domain structure of patterned permalloy films and of a Co(0001) single crystal surface are studied with elliptically polarized light from the new nanospectroscopy beamline at ELETTRA in a low energy electron microscope, using it as a diagnostic tool in the commissioning phase of the beamline. Mirror and low energy electron microscopy as well as low energy electron diffraction are shown to be valuable fast techniques for system alignment and specimen characterization.
44

Imada, Hiroshi, Miyabi Imai-Imada, Kuniyuki Miwa, Hidemasa Yamane, Takeshi Iwasa, Yusuke Tanaka, Naoyuki Toriumi, et al. "Single-molecule laser nanospectroscopy with micro–electron volt energy resolution." Science 373, no. 6550 (July 1, 2021): 95–98. http://dx.doi.org/10.1126/science.abg8790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ways to characterize and control excited states at the single-molecule and atomic levels are needed to exploit excitation-triggered energy-conversion processes. Here, we present a single-molecule spectroscopic method with micro–electron volt energy and submolecular-spatial resolution using laser driving of nanocavity plasmons to induce molecular luminescence in scanning tunneling microscopy. This tunable and monochromatic nanoprobe allows state-selective characterization of the energy levels and linewidths of individual electronic and vibrational quantum states of a single molecule. Moreover, we demonstrate that the energy levels of the states can be finely tuned by using the Stark effect and plasmon-exciton coupling in the tunneling junction. Our technique and findings open a route to the creation of designed energy-converting functions by using tuned energy levels of molecular systems.
45

Suzuki, M., N. Kawamura, M. Mizumaki, Y. Terada, T. Uruga, A. Fujiwara, H. Yamazaki, et al. "A hard X-ray nanospectroscopy station at SPring-8 BL39XU." Journal of Physics: Conference Series 430 (April 22, 2013): 012017. http://dx.doi.org/10.1088/1742-6596/430/1/012017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Liu, Gang Logan, Yi-Tao Long, Yeonho Choi, Taewook Kang, and Luke P. Lee. "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer." Nature Methods 4, no. 12 (November 18, 2007): 1015–17. http://dx.doi.org/10.1038/nmeth1133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kästner, Bernd, C. Magnus Johnson, Peter Hermann, Mattias Kruskopf, Klaus Pierz, Arne Hoehl, Andrea Hornemann, et al. "Correction to Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains." ACS Omega 5, no. 25 (June 18, 2020): 15762. http://dx.doi.org/10.1021/acsomega.0c02552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Chan, Ka Lung Andrew, Ioannis Lekkas, Mark D. Frogley, Gianfelice Cinque, Ali Altharawi, Gianluca Bello, and Lea Ann Dailey. "Synchrotron Photothermal Infrared Nanospectroscopy of Drug-Induced Phospholipidosis in Macrophages." Analytical Chemistry 92, no. 12 (May 12, 2020): 8097–107. http://dx.doi.org/10.1021/acs.analchem.9b05759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Autore, Marta, Lars Mester, Monika Goikoetxea, and R. Hillenbrand. "Substrate Matters: Surface-Polariton Enhanced Infrared Nanospectroscopy of Molecular Vibrations." Nano Letters 19, no. 11 (October 2019): 8066–73. http://dx.doi.org/10.1021/acs.nanolett.9b03257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ortega-Gomez, Angel, Javier Barroso, Alba Calatayud-Sánchez, Joseba Zubia, Fernando Benito-Lopez, Lourdes Basabe-Desmonts, and Joel Villatoro. "Cytochrome c detection by plasmonic nanospectroscopy on optical fiber facets." Sensors and Actuators B: Chemical 330 (March 2021): 129358. http://dx.doi.org/10.1016/j.snb.2020.129358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії