Добірка наукової літератури з теми "Nanoscale iron"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nanoscale iron".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nanoscale iron"
Chen, L. J., S. Y. Chen, and H. C. Chen. "Nanoscale iron disilicides." Thin Solid Films 515, no. 22 (August 2007): 8140–43. http://dx.doi.org/10.1016/j.tsf.2007.02.025.
Повний текст джерелаLivne, Z., A. Munitz, J. C. Rawers, and R. J. Fields. "Consolidation of nanoscale iron powders." Nanostructured Materials 10, no. 4 (May 1998): 503–22. http://dx.doi.org/10.1016/s0965-9773(98)00094-4.
Повний текст джерелаYuan, Ching, and Hsing-Lung Lien. "Removal of Arsenate from Aqueous Solution Using Nanoscale Iron Particles." Water Quality Research Journal 41, no. 2 (May 1, 2006): 210–15. http://dx.doi.org/10.2166/wqrj.2006.024.
Повний текст джерелаZhang, Xue, Su Qin Li, and Kudureti Ayijamali. "Preparation, Characterization of Nanoscale Zero-Valent Iron and its Application in Coking Wastewater Treatment." Advanced Materials Research 194-196 (February 2011): 511–14. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.511.
Повний текст джерелаPang, Zhi Hua, Xiao Shan Jia, Kai Liu, Zhen Xing Wang, Qi Jing Luo, and Jun Luo. "Preparation, Characterization and their Performance of the Supported Nanoscale Zero-Valent Iron Materials with Different Iron Contents." Advanced Materials Research 573-574 (October 2012): 155–62. http://dx.doi.org/10.4028/www.scientific.net/amr.573-574.155.
Повний текст джерелаPeng, Xiangqi, Xiaocheng Liu, Yaoyu Zhou, Bo Peng, Lin Tang, Lin Luo, Bangsong Yao, Yaocheng Deng, Jing Tang, and Guangming Zeng. "New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions." RSC Advances 7, no. 15 (2017): 8755–61. http://dx.doi.org/10.1039/c6ra27256h.
Повний текст джерелаZheng, Qiang, Miaofang Chi, Maxim Ziatdinov, Li Li, Petro Maksymovych, Matt F. Chisholm, Sergei V. Kalinin, and Athena S. Sefat. "Nanoscale interlayer defects in iron arsenides." Journal of Solid State Chemistry 277 (September 2019): 422–26. http://dx.doi.org/10.1016/j.jssc.2019.06.040.
Повний текст джерелаKerznizan, Carl F., Kenneth J. Klabunde, Christopher M. Sorensen, and George C. Hadjipanayis. "Magnetic properties of nanoscale iron particles." Journal of Applied Physics 67, no. 9 (May 1990): 5897–98. http://dx.doi.org/10.1063/1.346007.
Повний текст джерелаNakano, Hiroki, and Seiji Miyashita. "Magnetization Process of Nanoscale Iron Cluster." Journal of the Physical Society of Japan 70, no. 7 (July 15, 2001): 2151–57. http://dx.doi.org/10.1143/jpsj.70.2151.
Повний текст джерелаCao, Jiasheng, Daniel Elliott, and Wei-xian Zhang. "Perchlorate Reduction by Nanoscale Iron Particles." Journal of Nanoparticle Research 7, no. 4-5 (October 2005): 499–506. http://dx.doi.org/10.1007/s11051-005-4412-x.
Повний текст джерелаДисертації з теми "Nanoscale iron"
Welch, Regan Eileen. "Reduction of 2,4,6-Trinitrotoluene with Nanoscale Zero-Valent Iron." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1180914214.
Повний текст джерелаEchols, Erica. "Environmental remediation of TNT using nanoscale zero-valent iron metal." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003105.
Повний текст джерелаChurch, Nathan Stewart. "Magnetic properties of iron-titanium oxides and their nanoscale intergrowths." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609524.
Повний текст джерелаGhahghaei, Nezamabadi Shirin. "Accelerated Degradation of Chlorinated Solvents by Nanoscale Zero-Valent Iron Coated with Iron Monosulfide and Stabilized with Carboxymethyl Cellulose." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1452681950.
Повний текст джерелаSolórzano, Rodríguez Rubén. "Iron-catechol based nanoscale coordination polymers as efficient carriers in HIV/AIDS therapy." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669503.
Повний текст джерелаEn esta tesis, se presentan metodologías sintéticas para la preparación de compuestos catecólicos conjugados a fármacos antiretrovirales mediante un enlace sensible a enzimas. Como prueba de concepto, el fármaco anti-VIH zidovudina se usa como punto de partida. Utilizando este conjugado zidovudina-catecol se preparan polímeros de coordinación nanostructurados (NCPs) basados en hierro. Después de optimizar la metodología sintética para lograr un tama\u00F1o de partícula y una dispersión coloidal adecuadas, se evalúa el perfil de liberación de zidovudina en los NCPs en presencia y ausencia de esterasas. Por último, se realiza una evaluación biológica de estos NCPs que incluye citotoxicidad, internalización celular y ensayos de actividad anti-VIH en linfocitos infectados. A continuación, se explora la síntesis de nuevos conjugados de catecol con fármacos antiretrovirales. Específicamente, conjugados de emtricitabina y raltegravir se utilizan para formar NCPs conteniendo un solo fármaco en su estructura. Después de su caracterización y determinación del perfil de liberación para cada caso, se sintetizan NCPs conteniendo una mezcla de ambos fármacos y su comportamiento en cuanto a liberación se compara con los casos anteriores. Para acabar, se exploran metodologías para la síntesis de nuevos conjugados de catecol utilizando los fármacos lamivudina y tenofovir.
In this thesis, synthetic methodologies for the preparation of catechol compounds conjugated to antiretroviral drugs through an enzyme-sensitive bond are presented. As a proof-of-concept, the anti-HIV drug zidovudine is used as a starting point. Iron-based nanoscale coordination polymers (NCPs) are then prepared using this zidovudine-catechol conjugate and a bis(imidazole) bridging ligand. After optimization of the synthetic methodology to achieve a suitable particle size and colloidal dispersion, the drug release profile of the NCPs in the presence or absence of esterases is determined by HPLC. Then, a biological evaluation of the nanoparticles is performed, including cytotoxicity, cellular uptake and anti-HIV activity in infected lymphocytes.As a step forward, the synthesis of additional catechol compounds attached to anti-HIV drugs is explored. Functionalization of emtricitabine and raltegravir with catechol allows the formation of analogous NCPs for each drug. After the determination of their drug release profile by methodologies developed in HPLC, NCPs containing a mixture of both drugs are prepared and their release behavior is compared to the individual NCPs. Last, methodologies for the preparation of other catechol conjugates with lamivudine and tenofovir are explored for their application in NCPs synthesis.
Kajenthira, Arani. "Mercury immobilisation in situ : Interactions between charcoal, nanoscale iron, and sulphate-reducing bacteria." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533855.
Повний текст джерелаHuang, Dennis. "Nanoscale Investigations of High-Temperature Superconductivity in a Single Atomic Layer of Iron Selenide." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493535.
Повний текст джерелаPhysics
Dislaki, Evangelia. "From macro- to nanoscale electrodeposited iron-copper (Fe–Cu) for energy-efficient and sustainable applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665449.
Повний текст джерелаThis work is focused on the electrodeposition and study of Fe-Cu in the form of continuous and patterned thin films and coatings as well as the fabrication and characterization of submicron motifs, nano- and microrods and tubes targeted at a variety of environmental and energy-efficient applications. Firstly, different electrolytes are developed for the electrochemical deposition of FexCu1−x coatings of several micrometers in thickness over a wide composition range (0≤x≤86). The effect of various complexing agents and plating conditions such as pH, temperature and magnetic stirring on the morphology, structure, elemental composition and magnetic behavior is investigated. It is shown that the coatings are partially alloyed, despite the low mutual solubility of Fe and Cu, and saturation magnetization can be easily tuned by an adjustment of the Fe content. Next, the synthetic protocols for the continuous coatings are extrapolated to the fabrication of patterned thin films with a hierarchical porosity achieved by coupling electrodeposition with colloidal lithography. The wetting properties of these films and their potential towards water-oil separation in mixtures and emulsions is assessed as a proof of concept. The high surface-to-volume ratio of the films in conjunction with the high roughness achieved by the macroporous network and the nanosized features along the pore walls lead to a strong hydrophobic/oleophilic nature of the deposits and an impressive absorption capacity. Notably, contrary to the thick coatings, the continuous and patterned Fe75Cu25 and Fe85Cu15 thin films are demonstrated to be fully alloyed. Furthermore, the high surface-to-volume ratio and the inherent nanoporosity of the narrow pore walls of the patterned films unveil their excellent potential towards voltage control of magnetization. Indeed, a coercivity reduction of up to 25% under application of a negative bias is achieved. This constitutes a promising way to curtail power consumption since magnetization reversal can then occur with lower applied magnetic fields (i.e., lower electric currents and minimized Joule heating power dissipation). Next, given the current trend towards miniaturization, submicron structures of three geometries and sizes are produced through electrodeposition onto pre-lithographed substrates. These substrates were previously prepared using electron-beam lithography which ensured a high feature quality. While existing literature on lithographed submicron motifs is largely based on structures below 50 nm in height, the structures prepared here are approximately 200-300 nm in height depending on plating conditions. This gives rise to interesting phenomena such as a compositional gradient, and thus different structural properties along the thickness. The magnetic properties are also thoroughly investigated with magnetic force microscopy suggesting magnetic curling effects. Finally, compositionally graded magnetic nano- and microrods and tubes of various diameters are fabricated in polycarbonate track-etched membranes through conventional as well as micelle-assisted electrodeposition methods. The ferromagnetic character of the material enables wireless magnetic steering while photocatalytically-driven directional propulsion of the microtubes is also confirmed.
Chowdhury, Md Abu Raihan. "Removal of Select Chlorinated Hydrocarbons by Nanoscale Zero-valent Iron Supported on Powdered Activated Charcoal." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496150130687849.
Повний текст джерелаLi, Jing. "Multi-scale investigations of carboxymethyl cellulose- coated nanoscale zero valent iron particle transport in porous media." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123130.
Повний текст джерелаL'injection souterraine des nanoparticules de fer à zéro valence (NZVI) est une technologie émergente pour l'assainissement in situ des sites contaminés par des polluants toxiques comme les solvants chlorés et les métaux lourds. L'un des principaux défis dans l'application des particules de NZVI à des fins de rémédiation est que les particules de NZVI ne sont pas facilement transportées dans des milieux poreux souterrains. L'objectif général de cette recherche est de relever ce défi en réalisant un certain nombre d'expériences en colonnes et en 2-D sur desbassins à l'échelle pilote ainsi que par l'analyse de la mécanique de dépôt de nanoparticules métalliques en théorie. Bien que de nombreuses études ont porté sur la stabilité et le transport de nanoparticules de fer (NZVI) revêtues de polymère / poly-électrolyte, la comparaison de l'effet du même type de stabilisant en polyélectrolyte ayant des poids moléculaires différents, sur la stabilité et le transport des particules de NZVI enrobées n'ont pas été effectués systématiquement à ce jour. Des poids moléculaires variables des polyélectrolytes homologues peuvent provoquer des variations de viscosité en solution libre et dans l'étendue de la stabilisation colloïdale électrostérique de NZVI en s'attachant sur la surface des nanoparticules. Des études antérieures sur le transport des particules NZVI ont été menées dans les colonnes placées verticalement, qui souvent ne sont pas représentatifs de l'orientation de l'écoulement réel sur le champ, ce qui conduit à une différence de potentiel de performance du transport de particules NZVI entre l'orientation de l'écoulement vertical couramment utilisé et le modèle à flux horizontal. Outre, les effets à l'échelle grandissante (de la colonne à l'échelle de laboratoire, pilote ou des manifestations à l'échelle du champ) sur le transport de NZVI sont rapportés. Dans cette étude, une enquête approfondie sur le transport de NZVI est effectuée dans un réservoir en 2-D à l'échelle pilote afin de faire la lumière sur la performance du transport des particules de NZVI dans des conditions qui sont plus près de la situation réelle. Enfin, pour calculer le coefficient de vitesse de dépôt des nanoparticules de métal en cours de transport, un nombre considérable d'études sur les particules de NZVI ont été effectué en employant des équations de transport à fin de prédire le contact de rendement du capteur unique qui sont mis au point sur la base des calculs numériques pour les particules colloïdales communes moins denses tels que des particules de latex, qui ont des densités plus inferieures que celles des particules de métal. Prenant le mode d'écoulement horizontal et les effets de la densité de nanoparticules métalliques en considération, une nouvelle méthode est développée en trois dimensions (3-D) afin de prédire plus précisément l'efficacité du collecteur unique de particules NZVI .
Книги з теми "Nanoscale iron"
Phenrat, Tanapon, and Gregory V. Lowry, eds. Nanoscale Zerovalent Iron Particles for Environmental Restoration. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3.
Повний текст джерелаZ, Livne, and National Institute of Standards and Technology (U.S.), eds. Consolidation of nanoscale iron powders. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Знайти повний текст джерелаNanoscale Zerovalent Iron Particles for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications. Springer, 2019.
Знайти повний текст джерелаЧастини книг з теми "Nanoscale iron"
Sun, Tianhao, Suju Hao, Wufeng Jiang, and Yuzhu Zhang. "Analysis of Nanoscale Iron Oxide Morphology." In The Minerals, Metals & Materials Series, 413–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36628-5_39.
Повний текст джерелаFrankel, Richard B., and Dennis A. Bazylinski. "Magnetosomes: Nanoscale Magnetic Iron Minerals in Bacteria." In Nanobiotechnology, 136–45. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602453.ch10.
Повний текст джерелаFilip, Jan, Jan Kolařík, Eleni Petala, Martin Petr, Ondřej Šráček, and Radek Zbořil. "Nanoscale Zerovalent Iron Particles for Treatment of Metalloids." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 157–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_4.
Повний текст джерелаGeiger, Cherie L., Christian A. Clausen, Kathleen Brooks, Christina Clausen, Christian Huntley, Laura Filipek, Debra D. Reinhart, et al. "Nanoscale and Microscale Iron Emulsions for Treating DNAPL." In ACS Symposium Series, 132–40. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0837.ch009.
Повний текст джерелаAlmeelbi, Talal, and Achintya Bezbaruah. "Aqueous phosphate removal using nanoscale zero-valent iron." In Nanotechnology for Sustainable Development, 197–210. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-05041-6_16.
Повний текст джерелаPhenrat, Tanapon, Gregory V. Lowry, and Peyman Babakhani. "Nanoscale Zerovalent Iron (NZVI) for Environmental Decontamination: A Brief History of 20 Years of Research and Field-Scale Application." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 1–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_1.
Повний текст джерелаKotchaplai, Panaya, Eakalak Khan, and Alisa S. Vangnai. "Microbial Perspective of NZVI Applications." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 387–413. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_10.
Повний текст джерелаPhenrat, Tanapon, and Gregory V. Lowry. "Electromagnetic Induction of Nanoscale Zerovalent Iron for Enhanced Thermal Dissolution/Desorption and Dechlorination of Chlorinated Volatile Organic Compounds." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 415–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_11.
Повний текст джерелаLi, Jinxiang, Yuankui Sun, Liping Liang, and Xiaohong Guan. "Improving the Reactivity of ZVI and NZVI Toward Various Metals and Metal(loid)s with Weak Magnetic Field." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 435–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_12.
Повний текст джерелаPhenrat, Tanapon, and Gregory V. Lowry. "Vadose Zone Remediation of Dense Nonaqueous Phase Liquid Residuals Using Foam-Based Nanoscale Zerovalent Iron Particles with Low-Frequency Electromagnetic Field." In Nanoscale Zerovalent Iron Particles for Environmental Restoration, 471–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95340-3_13.
Повний текст джерелаТези доповідей конференцій з теми "Nanoscale iron"
Panturu, Eugenia, Razvan Ioan Panturu, Gheorghita Jinescu, Antoneta Filcenco – Olteanu, and Aura Daniela Radu. "NANOSCALE IRON PARTICLES FOR WASTEWATER DECONTAMINATION." In International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2018. http://dx.doi.org/10.21698/simi.2018.fp07.
Повний текст джерелаRamachandran, Uma, and Shobana Ganesan. "Studying Arsenic Removal using Nanoscale Zero-valent Iron." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_093.
Повний текст джерелаSouza, M. G. O., F. T. Silva, and J. F. Oliveira. "Organic pollutants in groundwater: remediation by nanoscale iron particles." In WATER POLLUTION 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wp080111.
Повний текст джерелаCapecchi, Chistopher, and Achintya N. Bezbaruah. "Arsenic Contaminated Groundwater Remediation by Entrapped Nanoscale Zero-Valent Iron." In World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41173(414)355.
Повний текст джерелаKhodadoust, Amid P., Krishna R. Reddy, and Srinivasa Varadhan. "Transport of Lactate-Modified Nanoscale Iron Particles in Sand Columns." In GeoCongress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40970(309)60.
Повний текст джерелаHui, Li, Shi Zhe, Xing Rui-xian, Guo Mo-ran, Hu Xin-yue, Song Wan-ying, Jin Mei-hui, Gao Ming-xi, and Cai Hong-xing. "The scattering properties of iron nanorods." In 2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2012. http://dx.doi.org/10.1109/3m-nano.2012.6472992.
Повний текст джерелаMu, Na, Dongsu Bi, Rongbing Fu, Xiaopin Guo, and Zhen Xu. "Sepiolite-supported nanoscale zerovalent iron to remediate decabromodiphenyl ether contaminated soil." In 2015 International Power, Electronics and Materials Engineering Conference. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ipemec-15.2015.152.
Повний текст джерелаBetzer, Oshra, Menachem Motiei, Tamar Dreifuss, Tamar Sadan, Noam Omer, Tamar Blumenfeld-Katzir, Zhuang Liu, Noam Ben-Eliezer, and Rachela Popovtzer. "Core/Shell Iron Oxide@Gold nanoparticles for dual-modal CT/MRI imaging." In Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII, edited by Dror Fixler, Sebastian Wachsmann-Hogiu, and Ewa M. Goldys. SPIE, 2020. http://dx.doi.org/10.1117/12.2548430.
Повний текст джерелаPolyakov, A. Yu, M. T. Cieschi, T. A. Sorkina, M. M. Zimbovskaya, V. A. Lebedev, D. S. Volkov, D. A. Pankratov, N. A. Kulikova, and I. V. Perminova. "Design of humic-based iron nanofertilizers: iron (hydr)oxide chemistry, nanoscale benefits, and multilevel impact of humic substances." In Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems». CLUB PRINT ltd., 2019. http://dx.doi.org/10.36291/hit.2019.polyakov.124.
Повний текст джерелаFu, Yuncong, Qingru Zeng, Liang Peng, Huijuan Song, Jihai Shao, and Jidong Gu. "High Efficient Removal of Tetracycline from Solution by the Nanoscale Zerovalent Iron." In 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.118.
Повний текст джерелаЗвіти організацій з теми "Nanoscale iron"
Livne, Z., A. Munitz, J. C. Rawers, and R. J. Fields. Consolidation of nanoscale iron powders. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5990.
Повний текст джерелаMatson, D. W., J. C. Linehan, J. G. Darab, H. M. Watrob, E. G. Lui, M. R. Phelps, and M. O. Hogan. Progress in the development and production of nanoscale iron-coating catalysts. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/227685.
Повний текст джерелаGavaskar, Arun, Lauren Tatar, and Wendy Condit. Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada446916.
Повний текст джерелаDatye, A. K., M. D. Shroff, Y. Jin, R. P. Brooks, J. A. Wilder, M. S. Harrington, A. G. Sault, and N. B. Jackson. Nanoscale attrition during activation of precipitated iron Fischer- Tropsch catalysts: Implications for catalyst design. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/237416.
Повний текст джерелаAbriola, Linda, Andrea Ramsburg, and Kurt Pennell. Development and Optimization of Targeted Nanoscale Iron Delivery Methods for Treatment of NAPL Source Zones. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada544870.
Повний текст джерела