Добірка наукової літератури з теми "Nanophotonic sensors"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nanophotonic sensors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nanophotonic sensors"

1

Bogue, Robert. "Nanophotonic technologies driving innovations in molecular sensing." Sensor Review 38, no. 2 (March 19, 2018): 171–75. http://dx.doi.org/10.1108/sr-07-2017-0124.

Повний текст джерела
Анотація:
Purpose This paper aims to provide a technical insight into recent molecular sensor developments involving nanophotonic materials and phenomena. Design/methodology/approach Following an introduction, this highlights a selection of recent research activities involving molecular sensors based on nanophotonic technologies. It discusses chemical sensors, gas sensors and finally the role of nanophotonics in Raman spectroscopy. Brief concluding comments are drawn. Findings This shows that nanophotonic technologies are being applied to a diversity of molecular sensors and have the potential to yield devices with enhanced features such as higher sensitivity and reduced size. As several of these sensors can be fabricated with CMOS technology, potential exists for mass-production and significantly reduced costs. Originality/value This article illustrates how emerging nanophotonic technologies are set to enhance the capabilities of a diverse range of molecular sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shakoor, Abdul, James Grant, Marco Grande, and David R. S. Cumming. "Towards Portable Nanophotonic Sensors." Sensors 19, no. 7 (April 10, 2019): 1715. http://dx.doi.org/10.3390/s19071715.

Повний текст джерела
Анотація:
A range of nanophotonic sensors composed of different materials and device configurations have been developed over the past two decades. These sensors have achieved high performance in terms of sensitivity and detection limit. The size of onchip nanophotonic sensors is also small and they are regarded as a strong candidate to provide the next generation sensors for a range of applications including chemical and biosensing for point-of-care diagnostics. However, the apparatus used to perform measurements of nanophotonic sensor chips is bulky, expensive and requires experts to operate them. Thus, although integrated nanophotonic sensors have shown high performance and are compact themselves their practical applications are limited by the lack of a compact readout system required for their measurements. To achieve the aim of using nanophotonic sensors in daily life it is important to develop nanophotonic sensors which are not only themselves small, but their readout system is also portable, compact and easy to operate. Recognizing the need to develop compact readout systems for onchip nanophotonic sensors, different groups around the globe have started to put efforts in this direction. This review article discusses different works carried out to develop integrated nanophotonic sensors with compact readout systems, which are divided into two categories; onchip nanophotonic sensors with monolithically integrated readout and onchip nanophotonic sensors with separate but compact readout systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Qin, Xin Hu, Long Wen, Yan Yu, and David R. S. Cumming. "Nanophotonic Image Sensors." Small 12, no. 36 (May 30, 2016): 4922–35. http://dx.doi.org/10.1002/smll.201600528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Alexander Y., and Ertugrul Cubukcu. "Graphene nanophotonic sensors." 2D Materials 2, no. 3 (September 24, 2015): 032005. http://dx.doi.org/10.1088/2053-1583/2/3/032005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yesilkoy, Filiz. "Optical Interrogation Techniques for Nanophotonic Biochemical Sensors." Sensors 19, no. 19 (October 3, 2019): 4287. http://dx.doi.org/10.3390/s19194287.

Повний текст джерела
Анотація:
The manipulation of light via nanoengineered surfaces has excited the optical community in the past few decades. Among the many applications enabled by nanophotonic devices, sensing has stood out due to their capability of identifying miniscule refractive index changes. In particular, when free-space propagating light effectively couples into subwavelength volumes created by nanostructures, the strongly-localized near-fields can enhance light’s interaction with matter at the nanoscale. As a result, nanophotonic sensors can non-destructively detect chemical species in real-time without the need of exogenous labels. The impact of such nanophotonic devices on biochemical sensor development became evident as the ever-growing research efforts in the field started addressing many critical needs in biomedical sciences, such as low-cost analytical platforms, simple quantitative bioassays, time-resolved sensing, rapid and multiplexed detection, single-molecule analytics, among others. In this review, the optical transduction methods used to interrogate optical resonances of nanophotonic sensors will be highlighted. Specifically, the optical methodologies used thus far will be evaluated based on their capability of addressing key requirements of the future sensor technologies, including miniaturization, multiplexing, spatial and temporal resolution, cost and sensitivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

AlQattan, Bader, Haider Butt, Aydin Sabouri, Ali K. Yetisen, Rajib Ahmed, and Nasim Mahmoodi. "Holographic direct pulsed laser writing of two-dimensional nanostructures." RSC Advances 6, no. 112 (2016): 111269–75. http://dx.doi.org/10.1039/c6ra22241b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vaidya, V. D., B. Morrison, L. G. Helt, R. Shahrokshahi, D. H. Mahler, M. J. Collins, K. Tan, et al. "Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device." Science Advances 6, no. 39 (September 2020): eaba9186. http://dx.doi.org/10.1126/sciadv.aba9186.

Повний текст джерела
Анотація:
We report demonstrations of both quadrature-squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number–resolving transition-edge sensors. We measure 1.0(1) decibels of broadband quadrature squeezing (~4 decibels inferred on-chip) and 1.5(3) decibels of photon number difference squeezing (~7 decibels inferred on-chip). Nearly single temporal mode operation is achieved, with measured raw unheralded second-order correlations g(2) as high as 1.95(1). Multiphoton events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hoang, Thi Hong Cam, Thanh Binh Pham, Thuy Van Nguyen, Van Dai Pham, Huy Bui, Van Hoi Pham, Elena Duran, et al. "Hybrid Integrated Nanophotonic Silicon-based Structures." Communications in Physics 29, no. 4 (December 16, 2019): 481. http://dx.doi.org/10.15625/0868-3166/29/4/13855.

Повний текст джерела
Анотація:
We report nanophotonic silicon-based devices for hybrid integration: 1D photonic crystal (PhC) on optical fiber, i. e. fiber Bragg grating (FBG) sensing probe integrated in fiber laser structure for chemical sensors and slotted planar 2D PhC cavity combined with carbon nanotube (CNT) towards light nanosources. The experiments have been carried out by integrating 1D PhC on optical fiber in fiber laser structure. This structure possesses many advantages including high resolution for wavelength shift, high optical signal-to-noise ratio (OSNR) of about 50~dB, the small full width at half-maximum (FWHM) of about 0.014~nm therefore its accuracy is enhanced, as well as the precision and capability are achieved for remote sensing. Low nitrate concentration in water from 0 to 80 ppm has been used to demonstrate its sensing ability in the experiment. The proposed sensor can work with good repeatability, rapid response, and its sensitivity can be obtained of \(3.2\times 10^{ - 3}\) nm/ppm with the limit of detection (LOD) of 3~ppm. For 2D PhC cavity, enhancement of photoluminescence of CNT emission is observed. The semiconducting single-walled carbon nanotubes (s-SWNTs) solution was prepared by polymer-sorted method and coupled with the confined modes in silicon slotted PhC cavities. The enhancement ratio of 1.15 is obtained by comparing between the PL peaks at two confined modes of the cavity. The PL enhancement result of the integrated system shows the potential for the realization of on-chip nanoscale sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Elshorbagy, Mahmoud H., Alexander Cuadrado, and Javier Alda. "Plasmonic Sensors Based on Funneling Light Through Nanophotonic Structures." Plasmonics 15, no. 4 (January 3, 2020): 915–21. http://dx.doi.org/10.1007/s11468-019-01105-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Petersen, Jan, Jürgen Volz, and Arno Rauschenbeutel. "Chiral nanophotonic waveguide interface based on spin-orbit interaction of light." Science 346, no. 6205 (September 4, 2014): 67–71. http://dx.doi.org/10.1126/science.1257671.

Повний текст джерела
Анотація:
Controlling the flow of light with nanophotonic waveguides has the potential of transforming integrated information processing. Because of the strong transverse confinement of the guided photons, their internal spin and their orbital angular momentum get coupled. Using this spin-orbit interaction of light, we break the mirror symmetry of the scattering of light with a gold nanoparticle on the surface of a nanophotonic waveguide and realize a chiral waveguide coupler in which the handedness of the incident light determines the propagation direction in the waveguide. We control the directionality of the scattering process and can direct up to 94% of the incoupled light into a given direction. Our approach allows for the control and manipulation of light in optical waveguides and new designs of optical sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nanophotonic sensors"

1

Rozhitskii, M. M., and O. A. Sushko. "Nanophotonic sensors for biomedical and ecological application." Thesis, B. Verkin Institute of Low Temperature Physics and Engineering, NASU, 2013. http://openarchive.nure.ua/handle/document/8873.

Повний текст джерела
Анотація:
There is an ever-increasing need to enhance the capability of sensor technology for health, structural and environmental monitoring. One area of great concern is new strains of microbial organism and the spread of infectious diseases that requires rapid identification and detection in vivo and in vitro. Another area of major concern, worldwide, is the threat of chemical and biological terrorism. This points out onto necessity of improovement of existing and development of novel detection technologies based on nanomaterials. Nanophotonics-based sensors utilizing nanostructured multiple probes provide the ability for simultaneous detection of different biomedical and ecological objects as well as the ability for remote sensing where necessary. A useful future approach can utilize nanoscale optoelectronics with hybrid detection methods involving both photonics and electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hueting, Nikolai Alexander. "Nanophotonic sensors based on 1D and 2D photonic crystals in gallium nitride." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.689692.

Повний текст джерела
Анотація:
Photonic clystals are an exciting component in the field of nanophotonics. They allow the control, confinement and manipulation of light at the nanometre scale. The ability to fabricate photonic clystals with semiconductor fabrication technology makes them a suitable building block of photonic integrated circuits. Photonic clystals offer sensitivity to surrounding materials and they can enhance light-matter interaction. This has motivated considerable research into their application in the area of chemical and biological sensing. Photonic clystals provide a versatile platform for lab-on-a-chip applications and the prospect of high integration density could benefit cost-sensitive applications such point-of-care diagnostics or environmental sensing. This thesis investigates the feasibility of creating photonic crystal sensors on gallium nitride. The maturity of GaN-based photonic devices, such as LEDs, makes it an ideal platform for lab-on-a-chip applications. Two types of GaN photonic clystals sensors are designed, fabricated and characterised in this work. The first type is a ID grating, which supports guided mode resonances. These are fabricated by electronbeam lithography and dlY etching on GaN membranes and on GaN-on-sapphire. The ability of membrane gratings to sense the refractive index of a liquid that is present at one side of the membrane is verified experimentally. GaN-on-sapphire gratings are presented as a method of enhancing fluorescence emission from molecules placed on the gratings through the guided mode resonances. The second structure analysed is a modified 2D photonic clystal L3 cavity. This novel structure possesses a central hole, which allows the positioning of fluorescent molecules in a region of high electric field density. It is shown by finite difference time domain calculations, that the resonant modes of the cavity significantly enhance the absorption and emission of the molecules. The fabrication and characterisation of those cavities, along with coupling to ridge waveguides, are shown as a first step towards an integrated sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sushko, O. A., О. М. Bilash, and M. M. Rozhitskii. "Nanophotonic method and sensor for polycyclic aromatic hydrocarbons detection." Thesis, ECL 2014, 2014. http://openarchive.nure.ua/handle/document/8963.

Повний текст джерела
Анотація:
Anthropogenic pollution of environmental water is a huge problem for humanity today as it leads to an increase of incurable diseases. For example, the penetration into the organism of organic carcinogens such as polycyclic aromatic hydrocarbons (PAHs) can lead to the development of cancer tumors. Among PAHs the most dangerous is 3,4-benzopyrene (BP). There are a number of analytical methods for BP detection such as chromatographic, immuno-chemical, spectroscopic, luminescent and biological methods. But these methods beside their advantages have a number of significant shortcomings such as high detection limit (immuno-chemical and biological method), insufficient selectivity of PAHs detection, complexity and duration of sample preparation and analysis, high cost of device. Therefore development of new methods and tools for PAHs detecting using modern nanotechnology and nanomaterials remains urgent. So this work is devoted to the development of nanophotonic method and sensor device construction for the PAH in particular BP detection in water environment objects. Nanomaterials such as spherical quantum dots (QDs) are perspective object of nanophotonics can be used for development of optical sensors as sensor’s detector elements. They have a high luminescence quantum yield, possibility of optical and non-optical excitation, narrow luminescence spectrum and its wavelength dependence on the QDs diameter, high selectivity. This defined the perspective of their use instead of the well known organic luminophores.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bilash, О. М., О. М. Galaichenko, O. A. Sushko, and M. M. Rozhitskii. "Benzo[a]pyrene its influence on human organism and new nanophotonic detection method." Thesis, Benzo[a]pyrene its influence on human organism and new nanophotonic detection method, 2011. http://openarchive.nure.ua/handle/document/8860.

Повний текст джерела
Анотація:
Benzo[a]pyrene (BaP) is representative of polycyclic aromatic hydrocarbons (PAHs) family, the substance of the first hazard class. In an environmental, BaP accumulates mainly in a soil and less in a water. It comes from soil to plants and human tissues and continues to move on in the food chain in living organisms where at each stage the BaP concentration is increasing sufficiently. To human organism BaP can come through skin, respiratory organs, digestive system and transplacental infections. Besides that BaP is the most typical chemical carcinogen in environmental, it is dangerous to humans even at low concentrations, since its metabolites are mutagenic and highly carcinogenic and has the property for bioaccumulation. Being chemically relatively stable, BaP can migrate for a long time from one object to another. As a result, many objects and process in the environmental objects which do not have the ability to synthesize the BaP, are the secondary sources of its production. Content control of BaP in environmental can be accomplished by different assay among which the most wide-spread is liquid chromatography. Known methods possess both positive and negative characteristics the last are connected with assay complexity, not allowing of their used in a field conditions, duration, high cost. So new technologies especially based on nanotechnologies and nanomaterials are in great demand both for BaP and other hazardous organic PAHs compounds. Having in mind that BaP as most of PAH has high fluorescence yield in visible spectrum and is capable to emit electrogenerated chemiluminescence (ECL), it is quite possible to use this well-known assay method for both direct and indirect definition [1]. At the same time mentioned ECL methods of BaP definition provide not enough low limit of detection (LOD). Using luminescent nanomaterials such as semiconductor quantum dots (SCQD) as highly efficient detector elements in appropriate nanophotonic sensor can provide assay for BaP detection in surrounding objects water in the first turn with rather low LOD (10 nmol/l). The proposed combined photonic (electrochemiluminescent), nanotechnology (sensor’s electrode modification) and electrochemical (analytical signal excitation) techniques are possessing a number of advantages which are discussed in the given paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barth, Michael. "Hybrid nanophotonic elements and sensing devices based on photonic crystal structures." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16155.

Повний текст джерела
Анотація:
Die vorliegende Forschungsarbeit widmet sich der Entwicklung und Untersuchung neuartiger photonischer Kristallstrukuren für Anwendungen in den Gebieten der Nanophotonik und Optofluidik. Dabei konzentriert sich eine erste Serie von Experimenten auf die Charakterisierung und Optimierung photonischer Kristallresonatoren im sichtbaren Spektralbereich, wobei bisher unerreichte Resonatorgüten von bis zu 3400 gezeigt werden können. Diese Strukturen werden anschließend als Plattformen zur Herstellung von hybriden nanophotonischen Bauelementen verwendet, indem externe Partikel (wie z.B. Diamant-Nanokristalle und Metall-Nanopartikel) in kontrollierter Art und Weise an die Resonatoren gekoppelt werden. Zu diesem Zweck wird eine Nanomanipulationsmethode entwickelt, welche Rastersonden zur gezielten Positionierung und Anordnung von Partikeln auf den photonischen Kristallstrukturen benutzt. Verschiedene Arten solcher Hybridelemente werden realisiert und untersucht, einschließlich diamant-gekoppelter Resonatoren, plasmon-gekoppelter Resonatoren und Metall-Diamant Hybridstrukturen. Außer für Anwendungen auf dem Gebiet der Nanophotonik werden verschiedene photonische Kristallstrukturen auch hinsichtlich ihres Leistungsvermögens als biochemische Sensorelemente erforscht. Zum ersten Mal wird eine umfassende numerische Analyse der optischen Kräfte auf Objekte im Nahfeld photonischer Kristallresonatoren durchgeführt, welche neue Möglichkeiten zum Einfang sowie zur Detektion und Untersuchung biologischer Partikel in integrierten optofluidischen Bauteilen bieten. Weiterhin werden unterschiedliche photonische Kristallfasern bezüglich ihrer Detektionssensitivität in Absorptions- und Fluoreszenzmessungen untersucht, wobei sich eine klare Überlegenheit von selektiv befüllten Hohlkern-Designs im Vergleich zu Festkern-Fasern offenbart.
This thesis deals with the development and investigation of novel photonic crystal structures for applications in nanophotonics and optofluidics. Thereby, a first series of experiments focuses on the characterization and optimization of photonic crystal cavities in the visible wavelength range, demonstrating unprecedented cavity quality factors of up to 3400. These structures are subsequently employed as platforms for the creation of advanced hybrid nanophotonic elements by coupling external particles (such as diamond nanocrystals and metal nanoparticles) to the cavities in a well-controlled manner. For this purpose, a nanomanipulation method is developed, utilizing scanning probes for the deterministic positioning and assembly of particles on the photonic crystal structures. Various types of such hybrid elements are realized and investigated, including diamond-coupled cavities, plasmon-coupled cavities, and metal-diamond hybrid structures. Apart from applications in nanophotonics, different types of photonic crystal structures are also studied with regard to their performance as biochemical sensing elements. For the first time a thorough numerical analysis of the optical forces exerted on objects in the near-field of photonic crystal cavities is conducted, providing novel means to trap, detect, and investigate biological particles in integrated optofluidic devices. Furthermore, various types of photonic crystal fibers are studied with regard to their detection sensitivity in absorption and fluorescence measurements, revealing a clear superiority of selectively infiltrated hollow-core designs in comparison to solid-core fibers.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sabek, Jad. "Combination of nanophotonic biosensors and light-assisted immobilization procedures for the detection of cardiac biomarkers." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/124821.

Повний текст джерела
Анотація:
[ES] El cuidado de la salud es un campo en el que la detección precoz de enfermedades está cobrando cada vez más importancia. Hoy en día, profesionales y ciudadanos demandan que las técnicas de diagnóstico sean de alta calidad, tanto para el sistema de sanidad privado como para el público. Cuando se utilizan técnicas de diagnóstico de manera inadecuada, eso puede acarrear bastantes consecuencias, tales como un serio peligro sobre la salud y la sobrecarga técnica y económica de los servicios de salud. Eso es debido a que las técnicas de diagnóstico disponibles hoy en día son demasiado costosas, centralizadas en laboratorios y necesitan profesionales altamente cualificados para poder llevar a cabo dichas tareas, lo que conllevaría una demora en el tiempo, siendo este muchas veces vital para los enfermos. Es muy necesario, por lo tanto, reflexionar sobre la necesidad y emergencia de tales prácticas preventivas, especialmente para enfermedades de alto riesgo como el cáncer, el Alzheimer o la primera causa de muerte en el mundo, las enfermedades cardiovasculares. En este contexto, el objetivo principal del trabajo realizado durante esta Tesis Doctoral es ayudar a superar estos problemas mediante la exploración de la posibilidad de utilizar tecnología fotónica para el desarrollo de sistemas de análisis que puedan ser utilizados para el diagnóstico y pronóstico de las enfermedades cardiovasculares. Este objetivo se ha abordado mediante la combinación de la tecnología nanofotónica, consistiendo en la nanofabricación de las estructuras PBG de sensado que ofrece varios beneficios, como una alta sensibilidad, una extrema reducción de tamaño y un proceso de fabricación compatible con el de la industria microelectrónica, con un método de biofuncionalización obteniendo una capa de bioreconocimiento estable y selectiva mediante el uso de la reacción TEC asistida por luz capaz de proporcionar unas capas de bio-reconocimiento extremadamente finas con una inmovilización espacialmente selectiva.
[CAT] L'atenció a la salut és un camp en què la detecció precoç de malalties està cobrant cada vegada més importància. Hui en dia, professionals i ciutadans demanen que les tècniques de diagnòstic siguin d'alta qualitat, tant per al sistema de sanitat privat com per al públic. Quan s'utilitzen tècniques de diagnòstic de manera inadequada, això pot comportar bastants conseqüències, com ara, un seriós perill sobre la salut i la sobrecàrrega tècnica i econòmica dels serveis de salut. Això és degut al fet que les tècniques de diagnòstic disponibles hui en dia són molt costoses, centralitzades en laboratoris i necessiten professionals altament qualificats per poder realitzar aquestes tasques, lo que comportaria a una demora en el temps que moltes vegades es vital pels malalts. És molt necessari, per tant, reflexionar sobre la necessitat i emergència de tals practiques preventives, especialment per a malalties d'alt risc com el càncer, l'Alzheimer o la primera causa de mort al món, les malalties cardiovasculars. En aquest context, l'objectiu principal del treball realitzat durant aquesta Tesi Doctoral és ajudar a superar aquests problemes mitjançant l'exploració de la possibilitat d'utilitzar tecnologia fotònica per al desenvolupament de sistemes d'anàlisis que puguin ser utilitzats per al diagnòstic i pronòstic de les malalties cardiovasculars. Aquest objectiu s'ha abordat mitjançant la combinació de la tecnologia nanofotònica, consistint en la nanofabricació de les estructures de detecció de PBG fotòniques que ofereix diversos beneficis, com una alta sensibilitat, una extrema reducció de mida i un procés de fabricació compatible amb el de la indústria microelectrònica, amb un mètode de biofuncionalització obtenint una capa de bio-reconeixement estable i selectiva mitjançant l'ús de la reacció TEC assistida per llum capaç de proporcionar unes capes de bioreconeixement extremadament fines amb una immobilització espacialment selectiva. preventives, especialment per a malalties d'alt risc com el càncer, l'Alzheimer o la primera causa de mort al món, les malalties cardiovasculars. En aquest context, l'objectiu principal del treball realitzat durant aquesta Tesi Doctoral és ajudar a superar aquests problemes mitjançant l'exploració de la possibilitat d'utilitzar tecnologia fotònica per al desenvolupament de sistemes d'anàlisis que puguin ser utilitzats per al diagnòstic i pronòstic de les malalties cardiovasculars. Aquest objectiu s'ha abordat mitjançant la combinació de la tecnologia nanofotònica, consistint en la nanofabricació de les estructures de detecció de PBG fotòniques que ofereix diversos beneficis, com una alta sensibilitat, una extrema reducció de mida i un procés de fabricació compatible amb el de la indústria microelectrònica, amb un mètode de biofuncionalització obtenint una capa de bio-reconeixement estable i selectiva mitjançant l'ús de la reacció TEC assistida per llum capaç de proporcionar unes capes de bioreconeixement extremadament fines amb una immobilització espacialment selectiva.
[EN] Healthcare is a field where the early detection of diseases is becoming more and more important. Nowadays, professionals and citizens demand high quality diagnosis techniques offered by both private and public health systems. When the application of diagnostic tests is not adequate, different consequences can be observed such as health hazard and technical and economic overload of health services. This is due to the fact that the diagnostic techniques available are expensive, centralized in laboratories and with the need for highly qualified professionals to carry out these tasks, what can fundamentally lead to delays in time, being critical for the patient's health. It is very necessary, therefore, to reflect on the need and emergency of such preventive practices, especially for high-risk diseases such as cancer, Alzheimer or the first cause of death in the world, the cardiovascular diseases. Within this context, the main objective of the work done during this PhD Thesis is to help on overcoming these problems by exploring the possibility of using photonic technology for the development of analysis devices which might be used for the early diagnosis and prognosis of cardiovascular diseases. This objective has been addressed by combining nanophotonic technology, by the nanofabrication of the photonic PBG sensing structures, which provides several benefits such as a high sensitivity, an extreme size reduction and a fabrication process being compatible with that from the microelectronics industry, with a light-assisted biofunctionalization method forming a stable and selective biorecognition layer using TEC reaction able to provide extremely thin biorecognition layers with a spatially-selective immobilization.
Sabek, J. (2019). Combination of nanophotonic biosensors and light-assisted immobilization procedures for the detection of cardiac biomarkers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124821
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Torrance, David. "Influence of the Local Dielectric Environment and its Spatial Symmetry on Metal Nanoparticle Surface Plasmon Resonances." Honors in the Major Thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1195.

Повний текст джерела
Анотація:
This item is only available in print in the UCF Libraries. If this is your Honors Thesis, you can help us make it available online for use by researchers around the world by following the instructions on the distribution consent form at http://library.ucf.edu/Systems/DigitalInitiatives/DigitalCollections/InternetDistributionConsentAgreementForm.pdf You may also contact the project coordinator, Kerri Bottorff, at kerri.bottorff@ucf.edu for more information.
Bachelors
Sciences
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
8

James, Dean. "Cavity enhanced spectroscopies for small volume liquid analysis." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:0b47d4a1-7f21-4c80-a8d4-496ca1080d52.

Повний текст джерела
Анотація:
Cavity enhanced spectroscopies (CES) are currently amongst the most sensitive spectroscopic techniques available for probing gas-phase samples, however their application to the liquid-phase has been more limited. Sensitive analysis of submicrolitre liquid samples is highly desirable, as miniaturisation allows for the reaction and analysis of scarce or expensive reagents, produces less waste, and can increase the speed of separations and reactions, whilst having a small footprint and high throughput. Absorption spectroscopy is a particularly desirable technique due to its universal, label-free nature, however its application to small volume liquid samples is hampered by the associated short absorption pathlengths, which limit sensitivity. CES improve sensitivity by trapping light within a confined region, increasing the effective pathlength through the sample. Three distinct types of optical cavity were constructed and evaluated for the purposes of making optical absorption measurements on liquid samples. The first incorporated a high optical quality flow cell into a "macrocavity" formed from two dielectric mirrors separated by 51.3 cm. Cavity losses were minimised by positioning the flow cell at Brewster's angle to the optical axis, and the setup was used to perform a single-wavelength cavity ringdown spectroscopy experiment to detect and quantify nitrite within aqueous samples. The detection limit was determined to be 8.83 nM nitrite in an illuminated volume of only 74.6 nL. Scattering and reflective losses from the flow cell surfaces were found to be the largest barrier to increased sensitivity, leading us to focus on the integration of cavity mirrors within a microfluidic flow system in the work that followed. In the second set of experiments, cavity enhanced absorption spectroscopy (CEAS) measurements were performed on Thymol Blue using custom-made microfluidic chips with integrated cavity mirrors. Unfortunately, due to the plane-parallel configuration of the mirrors and the corresponding difficulty in sustaining stable cavity modes, the results were underwhelming, with a maximum cavity enhancement factor (CEF) of only 2.68. At this point, attention was focussed toward a more well-defined cavity geometry: open-access plano-concave microcavities. The microcavities consist of an array of micron-scale concave mirrors opposed by a planar mirror, with a pathlength that is tunable to sub-nanometer precision using piezoelectric actuators. In contrast to the other experimental setups described, themicrocavities allow for optical measurements to be performed in which we monitor the change of wavelength and/or amplitude of a single well-defined cavity mode in response to a liquid sample introduced between the mirrors. In the first microcavity experiment, we used 10 μm diameter mirrors with cavity lengths from 2.238 μm to 10.318 μm to demonstrate refractive index sensing in glucose solutions with a limit of detection of 3.5 x 10-4 RIU. The total volume of detection in our setup was 54 fL. Thus, at the limit of detection, the setup can detect the change of refractive index that results from the introduction of 900 zeptomoles (500,000 molecules) of glucose into the device. The microcavity sensor was then adapted to enable broadband absorption measurements of methylene blue via CEAS. By recording data simultaneously from multiple cavities of differing lengths, absorption data is obtained at a number of wavelengths. Using 10 μm diameter mirrors with cavity pathlengths from 476 nm to 728 nm, a limit of detection, expressed as minimum detectable absorption per unit pathlength, of 1.71 cm-1 was achieved within a volume of 580 attolitres, corresponding to less than 2000 molecules within the mode volume of the cavity. Finally, a new prototype was developed with improved cavity finesse, a much more intense and stable light source, and improved flow design. Using a single plano-concave microcavity within the array with a cavity pathlength of 839.7 nm, and 4 μm radius of curvature mirror, absorption measurements were performed on Methylene Blue. Analysis of this data indicated a CEF of around 9270, and a limit of detection based on the measured signal-to-noise ratio of 0.0146 cm-1. This corresponds to a minimum detectable concentration of 104 nM Methylene Blue, which given the mode volume of 219 aL, suggests a theoretical minimum detectable number of molecules of 14.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gaignebet, Nicolas. "Réalisation et caractérisation de puces de capteurs à cristaux photoniques : Vers un dispositif de biodétection intégré." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI128.

Повний текст джерела
Анотація:
Les besoins en matière d'analyse moléculaire portative sont croissants, comme dans le cadre de la médecine d'urgence, le dépistage médical précoce, ou encore le contrôle sanitaire des denrées alimentaires. Ces besoins mènent au développement de biocapteurs performants répondant aux critères du « Point-of-Care » (POC), c'est-à-dire la détection sur le lieu d'intervention, que ce soit au chevet du patient, dans un cabinet de médecin, etc. Les capteurs POC ont pour fonction principale de réduire le coût et la durée nécessaire aux analyses, afin d'être en mesure de prendre une décision thérapeutique la plus rapide. De plus, grâce à leur mobilité ils permettent de proposer des analyses médicales dans les zones éloignées des centres hospitaliers et des laboratoires d’analyses. L'objectif de cette thèse est de développer un dispositif de détection optique compatible avec les critères du POC et permettant de répondre aux besoins en matière de criblage moléculaire dans ce type d’analyses. Afin de répondre à ces critères, ce dispositif devra être portable, rapide, bas-coût, et capable de détecter plusieurs biomolécules en parallèle avec une puce jetable, tout en présentant de bonnes performances de détection. L'approche présentée dans ce manuscrit consiste en un dispositif d'imagerie sans lentille, utilisant une puce de cristaux photoniques en silicium, avec une illumination en incidence normale par une source lumineuse bas-coût. Les résultats phares de cette thèse sont d’une part la démonstration d’une détection spécifique de biomolécules à l'aide de nos capteurs à cristaux photoniques, et d’autre part la démonstration de puces à cristaux photoniques intégrant une fonction de spectrométrie pour une application de détection en imagerie sans lentille compatible avec les critères du POC
The needs for portable molecular analysis tools are growing, including in the fields of emergency care, early medical diagnosis, or food safety analysis. These needs lead to the development of performant biosensors, meeting the criteria of “Point-of-Care” (POC), that is, the detection in the field, whether at the patient’s place, the physician’s office, etc. POC sensors’ primary missions are to reduce the analysis time and cost, to allow for a quicker therapeutic decision. In addition, thanks to their portability, they can provide analysis availability in remote areas, far from hospitals or medical laboratories. The objective of this PhD work is to develop an optical sensing system, compatible with the POC criteria, and addressing the needs in terms of molecular screening. To meet these criteria, this sensing system should be portable, fast, low-cost, and able to detect multiple biomolecules in parallel on a disposable chip, while providing good sensing performances. The approach presented in this manuscript consists in a lens-less imaging system, exploiting photonic crystals on a silicon chip, with a normal incidence illumination by a low-cost light source. The main results of this PhD work are on one hand the demonstration of a specific detection of biomolecules, thanks to our photonic crystal sensors; and on the other hand the demonstration of the integration of an on-chip spectrometry functionality using photonic crystals, towards an application in lens-less imaging detection compatible with the POC criteria
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alrasheed, Salma. "Plasmonic Devices for Near and Far-Field Applications." Diss., 2017. http://hdl.handle.net/10754/626346.

Повний текст джерела
Анотація:
Plasmonics is an important branch of nanophotonics and is the study of the interaction of electromagnetic fields with the free electrons in a metal at metallic/dielectric interfaces or in small metallic nanostructures. The electric component of an exciting electromagnetic field can induce collective electron oscillations known as surface plasmons. Such oscillations lead to the localization of the fields that can be at sub-wavelength scale and to its significant enhancement relative to the excitation fields. These two characteristics of localization and enhancement are the main components that allow for the guiding and manipulation of light beyond the diffraction limit. This thesis focuses on developing plasmonic devices for near and far-field applications. In the first part of the thesis, we demonstrate the detection of single point mutation in peptides from multicomponent mixtures for early breast cancer detection using selfsimilar chain (SCC) plasmonic devices that show high field enhancement and localization. In the second part of this work, we investigate the anomalous reflection of light for TM polarization for normal and oblique incidence in the visible regime. We propose gradient phase gap surface plasmon (GSP) metasurfaces that exhibit high conversion efficiency (up to ∼97% of total reflected light) to the anomalous reflection angle for blue, green and red wavelengths at normal and oblique incidence. In the third part of the thesis, we present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. In the fourth part of this work, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. In the fifth and final part of the thesis, we propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulator-metal (MIM) structure. The computational method used throughout the thesis is the finite-difference time-domain method (FDTD).
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Nanophotonic sensors"

1

service), IEEE Xplore (Online, ed. Future trends in microelectronics: From nanophotonics to sensors and energy. [Hoboken, N.J.]: IEEE Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

George, Thomas F. Micro- and nanotechnology sensors, systems and applications: 15-17 April 2009, Orlando, Florida, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

(Society), SPIE, ed. Micro- and nanotechnology sensors, systems and applications: 15-17 April 2009, Orlando, Florida, United States. Bellingham, Wash: SPIE, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

George, Thomas F. Micro- and nanotechnology sensors, systems, and applications III: 25-29 April 2011, Orlando, Florida, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dutta, Achyut K., Thomas F. George, and M. Saiful Islam. Micro- and nanotechnology sensors, systems, and applications II: 5-9 April 2010, Orlando, Florida, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nanooptoelectronic Sensors And Devices Nanophotonics From Design To Manufacturing. William Andrew Publishing, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Serge, Luryi, Xu Jimmy, and Zaslavsky Alexander, eds. Future trends in microelectronics: From nanophotonics to sensors and energy. Hoboken, N.J: WILEY-IEEE, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xi, Ning, and King Lai. Nano Optoelectronic Sensors and Devices: Nanophotonics from Design to Manufacturing. Elsevier Science & Technology Books, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lakhtakia, Akhlesh, Guru Subramanyam, Karl Gudmundsson, and Partha Banerjee. Thin Film Nanophotonics: Conclusions from the Third International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors. Elsevier, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nanophotonic sensors"

1

Abdulhalim, I. "Nanophotonic and Subwavelength Structures for Sensing and Biosensing." In Springer Series on Chemical Sensors and Biosensors, 73–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02827-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Neculae, Adrian, and Dan Curticapean. "The Micro- and Nanoinvestigation and Control of Physical Processes Using Optical Fiber Sensors and Numerical Simulations." In Micro- and Nanophotonic Technologies, 355–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699940.ch15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Javahiraly, Nicolas, and Cédric Perrotton. "Nanoplasmonic Guided Optic Hydrogen Sensor." In Micro- and Nanophotonic Technologies, 443–70. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699940.ch19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kazemi, Alex A., Chengning Yang, and Shiping Chen. "Fiber Optic Liquid-Level Sensor System for Aerospace Applications." In Micro- and Nanophotonic Technologies, 471–88. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699940.ch20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Le, Trung-Thanh. "New Approach to Mach-Zehnder Interferometer (MZI) Cell Based on Silicon Waveguides for Nanophotonic Circuits." In Applications of Silicon Photonics in Sensors and Waveguides. InTech, 2018. http://dx.doi.org/10.5772/intechopen.76181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bai, Ping, Xiaodong Zhou, Ten It Wong, Lin Wu, and Song Sun. "Localized polariton-based sensors." In Nanophotonics and Plasmonics, 175–98. CRC Press, 2017. http://dx.doi.org/10.1201/9781315153063-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Nanophotonic Sensor for Polycyclic Aromatic Hydrocarbon Detection." In Nanobiophysics, 397–426. Jenny Stanford Publishing, 2016. http://dx.doi.org/10.1201/b20480-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A. Sohi, Parsoua, and Mojtaba Kahrizi. "Principles and Applications of Nanoplasmonics in Biological and Chemical Sensing: A Review." In Recent Advances in Nanophotonics - Fundamentals and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93001.

Повний текст джерела
Анотація:
Biosensing requires a highly sensitive real-time detection of the biomolecules. These properties are granted by nanoplasmonic sensing techniques. SPR-based optical sensors have evolved as a sensitive and versatile biosensing tool. A growing number of SPR-based sensing applications in the solution of clinical problems are reported in the recent years. This refers to the point that these sensors provide label-free detection of the living cells and non-destructive analysis techniques. In this study, we will review the mechanism of the detection in SPR biosensing, followed by the methods used to develop sensors to detect gases and the chemical, biological, and molecular interaction. The device sensitivity improvement based on plasmonic effects is also addressed in this study, and accordingly, the size and material dependence of the resonance frequency are discussed. The reviewed articles are categorized into three groups, depending on the SPR excitation configuration. In the first group of the sensors, the sensitivity of LSPR-based sensors in prism coupler configurations is reviewed. The second group, SPR excitation by optical fiber, slightly improved the sensitivity of the detections. The unique capability of the third group, photonic crystal fiber SPR sensors, in providing greatly improved sensitivity, generated a vast field of researches and applications in biosensing devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Bo, and Chengkuo Lee. "Physical sensors based on photonic crystals." In Optical MEMS, Nanophotonics, and Their Applications, 217–52. CRC Press, 2017. http://dx.doi.org/10.1201/9781315151557-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Walia, Ritu, and Kamal Nain Chopra*. "Designing and numerical modeling of surface plasmon resonance temperature sensors based on photonic crystal fibers with emphasis on plasmonics and nanophotonics optical quantum metamaterials." In Advances in Optoelectronic Technology and Industry Development, 205–12. CRC Press, 2019. http://dx.doi.org/10.1201/9780429283628-29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nanophotonic sensors"

1

Barclay, Paul. "Nanophotonic optomechanical sensors." In 2015 Photonics North. IEEE, 2015. http://dx.doi.org/10.1109/pn.2015.7569211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yesilkoy, Filiz, Eduardo R. Arvelo, Yasaman Jahani, Alexander Belushkin, Mingkai Liu, Andreas Tittl, Yuri Kivshar, and Hatice Altug. "Nanophotonic Biosensors: from Plasmonic to Dielectric Metasurfaces." In Optical Sensors. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/sensors.2019.sw4c.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Buijs, Robin D., Tom A. W. Wolterink, Giampiero Gerini, Ewold Verhagen, and A. Femius Koenderink. "Nanophotonic compressed sensing with small dipole arrays." In Optical Sensors. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/sensors.2020.sm4b.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Choy, Jennifer T. "Nanophotonic components for atomic sensors." In Optical and Quantum Sensing and Precision Metrology II, edited by Selim M. Shahriar and Jacob Scheuer. SPIE, 2022. http://dx.doi.org/10.1117/12.2616887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Salemink, Huub W., and Yazhao Liu. "Nanophotonic sensors for oil sensing (Conference Presentation)." In Smart Photonic and Optoelectronic Integrated Circuits XIX, edited by Louay A. Eldada, El-Hang Lee, and Sailing He. SPIE, 2017. http://dx.doi.org/10.1117/12.2251488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Khial, Parham P., Alexander D. White, and Ali Hajimiri. "A Chip-Scale Nanophotonic Optical Gyroscope." In 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). IEEE, 2019. http://dx.doi.org/10.1109/isiss.2019.8739715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Miller, Owen D., and Hyungki Shim. "Material-dictated fundamental limits to nanophotonic response." In Micro- and Nanotechnology Sensors, Systems, and Applications XI, edited by M. Saif Islam and Thomas George. SPIE, 2019. http://dx.doi.org/10.1117/12.2518124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tabassum, Shawana, Yifei Wang, Jikang Qu, Qiugu Wang, Seval Oren, Robert J. Weber, Meng Lu, Ratnesh Kumar, and Liang Dong. "Patterning of nanophotonic structures at optical fiber tip for refractive index sensing." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Miao, Xianglong, Lingyue Yan, Yun Wu, and Peter Q. Liu. "High-performance Biomolecular Sensor Employing Nanophotonic Structures for Passively Trapping Analyte Molecules at Sensing Hotspots." In Optical Sensors. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/sensors.2020.sm3b.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sebbag, Yoel, Alex Naiman, Eliran Talker, Yefim Barash, and Uriel Levy. "Chip scale integration of nanophotonic-atomic quantum Magnetic sensors." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jw2a.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Nanophotonic sensors"

1

Mabuchi, Hideo. Nanophotonic Sensor Integration and Coherent Feedback. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada562074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії