Дисертації з теми "Nanoparticules – Synthèse (chimie)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Nanoparticules – Synthèse (chimie)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Desbiens, Jessie. "Synthèse et caractérisation de nanoparticules de polymère dopées d'un complexe luminescent et de nanoparticules d'argent." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29213/29213.pdf.
Повний текст джерелаPatry, Maxime. "SYNTHÈSE ET CARACTÉRISATION D’UN MIROIR LIQUIDE À BASE DE NANOPARTICULES D’ARGENT." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28918/28918.pdf.
Повний текст джерелаAufaure, Romain. "Synthèse et fonctionnalisation de nanoparticules d'or à l'aide de molécules phosphorées." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCD013/document.
Повний текст джерелаIn the ever growing fields of nanoscience the control of the synthesis of gold nanoparticles (GNPs) owing to their large variety of applications has emerged as an important domain. Among all methodologies Turkevich-Frens synthesis using citrates that act as ligand and reducing agent remains a method of choice for the obtaining of water soluble GNPs. Nevertheless, in post-synthesis, citrates are often exchanged with other ligands to enhanced stabilization and allow further functionalisation. In our work we present a new class of bi-functional molecules (1-hydroxy-1,1-methylene bisphosphonates HMBP) that can both reduce Au(III) and act as an efficient stabilizer of the formed GNPs in water. The first size controlled GNPs “one pot” synthesis was achieved by using an alkene conjugated HMBP, the (1-hydroxy-1-phosphonopent-4-enyl)phosphonic acid (HMBPene). We moreover, rationalized the mechanism of the GNPs synthesis using this type of molecule. We then, evaluated several methodologies for the post-functionalization of our nanoplateform and developed a « Click » chemistry approach to nanoparticle coating by tetrazine cycloaddition. Other nanoplatforms were synthesized using pegylated hydroxyl methylene bisphosphonates. This new class of bisphosphonate coated GNPs showed an improved stability in biological media and brought reactive groups available for post-functionalization as well, illustrated by the coupling of a fluorescent dye. The last part of this was dedicated to our latest results on GNPs synthesis for biomedical applications with HMBP compounds
Beaupré, Ariane. "SYNTHÈSE ET CARACTÉRISATION DE COQUILLE DE SILICE SUR NANOPARTICULES DE FLUORURE D’YTTRIUM." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28972/28972.pdf.
Повний текст джерелаDe, Vos Caroline. "Synthèse de nanoparticules d'or et d'argent par microplasma à pression atmosphérique." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/257288.
Повний текст джерелаDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Grosshans, Vièles Sarah. "Nanoparticules dérivant de précurseurs moléculaires dans des solides mésoporeux : synthèse et propriétés." Mulhouse, 2007. https://www.learning-center.uha.fr/opac/resource/nanoparticules-derivant-de-precurseurs-moleculaires-dans-des-solides-mesoporeux-synthese-et-propriet/BUS4012223.
Повний текст джерелаThe organized mesoporous silica (OMS) have many properties, making them excellent candidates as supports of nanoparticles dispersed in matrices. In particular, their regular porosity (site and arrangément) should favor the formation of nanoparticles with narrow size distributions and spatially well dispersed in the pares/charnels of the matrix. The aim of this PhD is to generate metallic nanoparticles into mesoporous silica matrices having controlled and organized porosity (OMS type MCM-41 or SBA-15) or without (xerogel). Our strategy consisted in the incorporation of molecular metallic precureurs in the pores of the silica matrix using varions methods and Men in generating metallic nanoparticles by reduction under controlled atmosphere. In a first part, the elaboration of OMS type MCM-41 materials with cobalt was carried out by direct synthesis using cobalt soap combined with C16TMABr, templating agent which is usually used for the synthesis of MCM-41. The cell parameter and the pores' sire of the samples depend on the amount of cobalt soap incorporaed. Indeed, the cobalt soap behaves like a co-surfactant in the synthesis of these samples, sine it forms with C16TMABr mixed micelles. Alter a suitable reducing heat traatment on calcined samples, cobalt nanoparticles were formed. In a second part, methods of incorporation by impregnation or grafting during a post-synthesis treatment of the cobalt cluster Co4(CO)Io(µ-NH(PPh2)2) were studied. These two methods lead to the formation of the Co2P phase. However, the conditions of heat traatment implemented did not result in nanoparticles confined into OMS. In a last part, bimetallic palladiummolybdenum clusters were incorporated by impregnation in two silica matrices ordered or rot. A suitable heat traaement led in botte cases to the formation of nanoparticles of new bimetallic phase (PdI,7Moo44P). The use of OMS matrix type SBA-15 materials, brings about formation of particles confined and dispersed in the pores of the mesoporous hosts. However, luger particles are obtained in the case of a xerogel matrix, featuring polydisperse and disordered pores
Sbargoud, Kamal. "Méthodologies de synthèse de nanoparticules de polymère multifonctionnelles : élaboration de nanoparticules fluorescentes à propriétés modulables et applications comme capteurs." Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0041.
Повний текст джерелаThis thesis was devoted to the synthesis of multifunctional polymer nanoparticles with controllable compositions including fluorescent nanoparticles. The study was focused on functionalizations via click reactions, especially the copper-catalyzed coupling of azide and alkyne (CuAAC) on nanoparticles prepared by microemulsion polymerization. The CuAAC reaction is efficient and can be performed in aqueous medium in the absence of organic solvent. This strategy has allowed the synthesis of bi-functional nanoparticles (15-20 nm) with adjustable ratios by orthogonal functionalization or by step by step functionalization. The introduction of two fluorophores, one of them being pH-sensitive (dansyl/fluorescein and coumarin 2/fluorescein pairs), gave access to ratiometric pH sensors based on energy transfer (FRET) with a measurement range from pH 2 to pH 6. Nanoparticles bearing two coumarins (C2 and C343) in controllable ratios, and located either on the surface or in the core, have been prepared by CuAAC or by a strategy that included the incorporation of coumarin 343 in the particle core by copolymerization. These nanoparticles have been applied for light harvesting via energy transfer with an antenna effect of 5. 6. The last part of this thesis focused on the grafting of spiro-rhodamine derivatives for the detection of mercuric ions in aqueous solution. The embedment of pyrene within the particle core gave access to a ratiometric fluorescent nanosensor
Cusinato, Lucy. "Chimie de surface de nanoparticules de ruthénium : approches théoriques." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30198/document.
Повний текст джерелаSurface chemistry of small metallic nanoparticles ( ~ 1 nm), mainly ruthenium or ruthenium alloys, has been studied at the DFT level via a theoretical approach. This study is supported by the development of analytical tools, that allow to investigate structural, electronic and thermodynamical properties of those nanoparticles. A first part is dedicated to the structural properties of metallic nanoparticles. Morphological diversity is highlighted as well as the necessity of being able to desing reliable models. The refinement of structural models is made possible via the combined use of generic nanoparticles structure design and of the reverse Monte Carlo method in order to fit experiments. Electronic or morphologic descriptors such as d-band center or generalized coordination number are applied to those nanoparticles, in relationship with their adsorption possibilities and, to a larger extent, with the Sabatier principle. An electronic descriptor of the chemical bond (COHP) is applied to the considered nanoparticles in order to show differences between structures, as well as the interactions within the metallic core and between the core and surface species. Finally, adsorption of surface species is studied. A single ligand probe is used to spot favorable adsorption sites, then higher coverages are considered so as to test its influence on the adsorption of extra ligands, and to investigate the effect of surface ligands on the metallic core morphology. To do this, thermodynamical properties of adsorbed systems have been modeled by taking into account the effect of pressure and temperature on the nanoparticles relative stabilities via ab initio thermodynamics. The same approache was eventually applied to H2/CO coadsorbed at ruthenium and rhenium nanoparticles surface, in the context of the Fischer-Tropsch synthesis, allowing to propose a thermodynamically favorable intermediate for this reaction. Preliminary study of this reaction, of high chemical and societal interest, conclude this manuscript. The combined use of structural, electronic and thermodynamical approaches widens the overview on some aspects of ruthenium nanoparticles chemistry
De, jesus almeida freitas Alexy. "Synthèse de nanoparticules cristallines en solution : rôle des états transitoires." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX003/document.
Повний текст джерелаSoft chemistry is attractive thanks to its easy implementation. However, the related phenomena are poorly understood to this day. Usually, crystal size and their nucleation rate are described using classical nucleation theories. By construction, they neglect (i) any potential intermediate state (ii) any consideration of microstructure. In addition, the nucleation rates measured are in disagreement with the prediction, by a factor of at least 1010. Taking into account the intermediate states and investigate their impact on the structure (not only the size) should be a good way to improve crystallisation theories.The characterisation of those intermediate states remains challenging : they are labile, nanometer-sized, and are formed in less than a second. To address our problem, europium-doped yttrium vanadate (YVO4:Eu) is an excellent candidate : it is microstructured and its crystallisation - polycrystalline or monocrystalline depending on the pH – occurs via an amorphous intermediate state.Our work precises the different microstructures observed. We then measure three different nucleation rates in situ X-ray scattering, with different degrees of polycristallinity associated. We propose a simple model predicting the poly/monocrystallinity from the competition between nucleation and crystal growth and the following new idea : the amorphous precipitate confines the reaction. In addition to this role, it also serves as reactor (contains 80% of the reactants) and as template (as it sets the particles’ final size). All three amorphous are structurally similar, its structure alone cannot explain the differences in structural kinetics we observe. We thus focus on chemical processes in play. In particular, we demonstrate that the reaction kinetics depends mainly on the number of hydroxyl ions engaged in the amorphous network.The methods and concepts developed here are independant on the chemical system used, and it is highly probable that they will prove valid for other compounds : other oxide nanoparticles, or crystals in general
Lemonier, Stéphane. "Préparation et caractérisation de nanoparticules d'or : stabilisation par des polysiloxanes et dépôt contrôlé sur des surfaces chargées." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2544/.
Повний текст джерелаThe work presented in this manuscript describes branched gold nanoparticles synthesis firstly, then secondly synthesis of a new polysiloxane family and finally the preparation and characterization of gold nanohybrids composed by gold nanoparticles and polysiloxanes. This thesis encompasses results about synthesis and reproducibility control of gold nanoparticles. Understanding of branched formation is studied, using glucosamine. HCl as only reducing agent to obtain the anisotropy. This formation leaded by glucosamine is used to form new gold nanoparticles in a seed-growth approach. Then the new polysiloxane family is described. The reaction involved is a thiolene reaction, and results and characterization are given. Finally, the study of nanohybrids is given. Optical properties of gold nanoparticles are described, in function of polymers. Then controlled gold nanohybrids deposition on surfaces is studied
Awala, Hussein. "Synthèse des nanoparticules de zéolithe pour des applications environnementales." Caen, 2014. http://www.theses.fr/2014CAEN2012.
Повний текст джерелаZeolite nanoparticles with diverse pore architectures, high external surface area, micro/mesoporosity, define particle size and morphology open the door for advanced applications. In addition to catalysis, separation and ion exchange processes, nanosized zeolites assembled in films and three-dimensional constructs are used as optical devices, separation membranes and reactors for immobilization of chemical sensitive compounds. In this work the synthesis procedure for nanosized zeolites (FAU and EMT- framework types) from organic-template-free precursor suspensions is developed. Besides, seed-assisted approach is applied for preparation of high silica BEA-type zeolite. In addition, environmentally friendly synthesis of nanosized zeolites at ambient condition using rice husk ash as a silica source is developed. The crystallization and transformation processes of eight zeolites in organic-free precursor suspensions are studied in details. Finally, the applications of nanosized zeolites for (1) purification of water (removal of heavy metals and pesticides), (2) stabilization of methylene blue, (3) inhibition of palm oil oxidation, (4) Bragg stacks chemical sensors, and (5) antireflection coatings are demonstrated
Soumare, Yaghoub. "Synthèse et organisation de nanoparticules magnétiques anisotropes par Chimie Douce : nouveaux précurseurs pour aimants permanents." Paris 7, 2008. http://www.theses.fr/2008PA077184.
Повний текст джерелаAnisotropic magnetic nanoparticles have been prepared via chimie douce methods by raduction of cobalt(II) and nickel(II) carboxylate precursors in basic solutions of 1,2-propanediol at 170°C using heterogeneous nucléation. With acatates as matal precursors, Co₈₀Ni₂₀ nanowires with a mean diameter of 8 nm and a mean length more than 200 nm were generated. The use of new cobalt carboxylate precursors led to Co nanorods with a mean diameter of 20 nm and a mean length of 100 nm. Moreover, the aspect ratio (mean length / mean diameter) can be tailored by modifying accurately the reaction parameters such as the nature of the metallic precursor, the basicity of the medium or the temperature rate. The metallic Co₈₀Ni₂₀ nanowires and Co nanorods crystallise mainly with the hexagonal close packed structure with the c axis the growth axis of the particle. These nanomaterials are ferromagnetic at room temperature and when aligned using an external magnetic field, their magnetic properties are considerably improved. These results prompt us to use these particles as building blocks for the preparation of a new class of permanent magnets
Clément, Marie. "Calixarènes pour la synthèse radiolytique de nanoparticules métalliques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS449/document.
Повний текст джерелаDuring this thesis, the synthesis of different calix[8]arenes and mono- and bimetallic calixarenic complexes was performed in order to produce nanoparticles by radiolysis. The different steps of the synthesis were optimized and different functionalizations were tested to improve the solubility and the anchoring at the nanoparticles surface. Metallic nanoparticles were generated from silver and/or gold salts and stabilized by calix[8]arenes in ethanol. The obtained spherical nanoparticles were very small (less than 5 nm) and homogeneous in size. HAADF/STEM-EDS analyses performed on Au-Ag nanoparticles revealed their bimetallic character and the presence of very small aggregates of less than 1 nm. Catalyticefficiency of the silver nanoparticles was tested through nitreous compound reduction.These results show the calixarenes efficiency to stabilize small nanoparticles while allowing the catalytic activity. Mono- and bimetallic nanoparticles (Au and Au-Ag) were also synthesized by radiolysis from the calixarenic complexes. This synthetic pathway allowed the increase of the amount of metal used during the synthesis without increasing the size of the obtained nanoparticles (3-4 nm). This particularity can be related to fast exchange phenomena between clusters formed by the calixarenes and the metallic precursors complexes, that were shown by NMR spectroscopy. However, this NMR study needs to be pursued
Guyonnet, Alexandre. "Synthèse et passivation de nanoparticules anisotropes à base de cuivre." Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0058.
Повний текст джерелаNanoparticles, based on oxides, chalcogenides or metals, of controlled size, shape, composition,surface condition, are at the heart of very lively research activity. Much remains to be discovered as to thecompositions and structures accessible at the nanometric scale. Many applications (biosensors, solar cells, touchscreens, therapeutic vectors, etc.) benefit from the contribution of these new nanostructures.In this thesis, we propose to explore new syntheses of nanoparticles derived from copper andrecoverable for their opto-electronic and catalytic properties. We are interested in the preparation of anisotropicobjects in polyol or aqueous medium. Synthesis in a polyol medium, which is too rapid, hardly leads to theformation of anisotropic nanoparticles. It leads to the formation of hollow copper oxide microparticles. Their sizecan be modulated by accelerating the growth kinetics. Synthesis in aqueous medium, in the presence of an aminoligand, makes it possible to form copper nanoparticles with a relatively high form factor (~ 3000).Two strategies have been studied to stabilize anisotropic copper nanoparticles with respect tooxidation: (i) use of sulfur precursors to passivate the surface (ii) association of copper with a corrosion-resistantmetal. The first strategy accelerated a marked improvement in the chemical and thermal stability of copperwires. The second strategy did not lead to the formation of wires in which the two metals are truly allied.However, with zinc, ultralong copper nanowires with a high form factor (> 7000) were obtained, which made itpossible to deduce a growth mechanism in which zinc plays the role of a catalyst
Ouadahi, Karima. "Méthodologies de synthèse de nanoparticules polymériques plurifonctionnelles et application comme capteurs fluorescents." Versailles-St Quentin en Yvelines, 2011. http://www.theses.fr/2011VERS0046.
Повний текст джерелаThis thesis was devoted to the synthesis of multifunctional polymeric nanoparticles using two methodologies : copolymerization with functionalized monomers or post-functionalization. These methods allow one to control the size of the nanoparticles; the diameters are usually between 15 and 20 nm. The use of these strategies has allowed the introduction of azide groups on the surface and core or only on the surface of nanoparticles. The functionalization with different types of alkynes using the copper-catalyzed cycloaddition ("Click Chemistry" reaction) allows the preparation of ratiometric pH sensor used in a pH range between 3 and 6,5. The post-functionalization strategy was used to introduce polyaminocarboxylic ligand at the surface for the complexation of europium ion. The encapsulation of a hydrophobic B-diketonate europium complex in the core of nanoparticles by impregnation method was also studied. The presence of reactive groups (azides or chlorobenzyle) has yielded multifunctional nanoparticles by grafting of various functionalization at the surface. The last part describes the study of synthetic pathways to monofunctional nanoparticles by solid-phase synthesis and to associations of organic and inorganic nanoparticles
Petrelli, Antoine. "Synthèse par chimie click non métallo-catalysée de glycoconjugués macromoléculaires d'interêt médical." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAV043/document.
Повний текст джерелаThe aim of the project is to develop new anomeric modification of oligosaccharides for the synthesis of glycoconjugates by metal-free click chemistry. Synthetic glycans have shown a great potential in medical and nanotechnology related fields. The current use of metallic catalyst during synthesis and the risk of contamination of the final product represent a drawback which could restrain their applications. Therefore an efficient metal free synthesis of glycoconjugates could be of great interest to circumvent this obstacle.Two distinct synthetic strategies have been explored for the metal free coupling of complex oligosaccharides on polymers to yield block-copolymers and glycoadsorbants. The glycopolymers were synthetized by a Michael addition between a thiol functionalized oligosaccharide and a maleimide or bromo-maleimide functionalized polymer. The nanoparticles obtained from the self-assembly of theses amphiphilic copolymers in water were characterized. The polycaprolactone-b-xylooligosaccharides copolymers presenting a reducible linkage were self-assembled into nanoparticles and assessed as model for the delivery of hydrophobic drugs. This system showed a selective release of the entrapped molecules in reducing environment making it an interesting system for the intra-tumoral delivery of anti-cancer drugs. Glycoadsorbents were prepared by a Diels Alder reaction between a solid matrix displaying a maleimide moiety and furyl functionalized oligosaccharides. The affinity matrixes obtained allowed the selective purification of lectins. The blood group antigen (A;B) grafted matrixes displayed good properties for the trapping of corresponding anti-A or anti-B antibodies. These types of immunoadsorbants have great potential for the treatment of immune diseases like the Guillain-Barré syndrome.To conclude, two efficient anomeric modification and coupling strategies of oligosaccharides have been developed, opening the way to the metal free synthesis of various glycoconjugates
Daou, Toufic Jean. "Synthèse et fonctionnalisation de nanoparticules d’oxydes de fer magnétiques." Université Louis Pasteur (Strasbourg) (1971-2008), 2007. https://publication-theses.unistra.fr/public/theses_doctorat/2007/DAOU_Toufic_Jean_2007.pdf.
Повний текст джерелаIn the first part, magnetite nanoparticles with controlled size have been synthesized by co-precipitation followed by hydrothermal treatment. By varying different parameters like the pH, the nature of the bases and the Base/Fe ratio, we were able to obtain, nanoparticles with an average size of 12 (± 2) nm but especially of 39 (± 5) nm with global composition: Fe2. 95O4 which can be described by a core-shell system with stoechiometric magnetite as core and oxidized layer as shell. In the second part, we report, our results on the direct and strong bonding of functional organic molecules onto the surface of this nanoparticles using either phosphate, phosphonate or carboxylate groups as coupling agents. These studies have shown that the nanoparticles functionalised by a phosphate or phosphonate groups allowed stronger bonding on the surface of the nanoparticles, higher grafting rate than the carboxylate groups and especially the conservation of the magnetic properties. The grafting occurs mainly by interaction with the Fe3+ in octahedral sites present in the (111) denser plane. The magnetic properties are not modified with phosphonate and phosphate, whereas the carboxylate induce a canting of spin in the oxidized layer decreasing magnetization. Optimisation of grafting conditions has conducted to very stable suspensions in water and THF
Ouyang, Liyan. "Synthèse de nanoparticules de cuivre par dismutation de complexes de cuivre (I) et développement de nouvelles voies d’accès par stratégie organométallique." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2022. http://theses.enscm.fr/interne/ENSCM_2022_OUYANG.pdf.
Повний текст джерелаThe synthesis of copper nanoparticles (CuNPs) with controlled shape and size have received increasing interest for a few years. The ability to control the shape and size of CuNPs have found enormous potential for altering their plasmonic, catalytic and optoelectronic properties.During these 3 years of thesis study, we have successfully synthetized CuNPs with tunable size and shape through several chemical methods.The first chapter of this work presented a brief overview of the most recent reports showing how noble metal nucleate and grow in solution. We thus focused on the reaction factors that are able to influence the final size and shape of the nanoparticles, and also the specific optical property of CuNPs. We also presented a few examples of methods reported in the literature for synthetizing CuNPs through the chemical reduction route.The Chapter II focused on the synthesis of designable size and morphology of CuNPs by using a range of phosphorus ligands (TOP, TOPO, PPh3, P(PhMe3)3, P(OMe)3, P(OC7H14)3, P(NMe2)3, P(O)((NMe2)3) via disproportionation route. From the use of these phosphorus ligands, we are able to form CuNPs with various shapes: cubes, spheres, octahedra, tetrahedra, rectangles, hexagons, wires and the mixed shapesIn Chapter III, we have investigated the preparation of CAACs-stabilized copper nanoparticles through a simple “one-pot” disproportionation reaction using only two reactants: CAACs-Cu(I) precursors and primary amine as solvent. We have been able to synthetize tunable size and shape-controlled CAACs-stabilized CuNPs by tuning the nature of CAACs ligands or solvent, and the amount of precursor or solvent.In Chapter IV, we reported a simple, innovative and robust thermal decomposition of organocopper reagents for the synthesis of well-defined CuNPs with narrow size distribution. Using this more atom-economic method, CuNPs were synthetized with tunable size ranging from 3 to 20 nm by modifying several reaction parameters (e.g. the amount of phosphine ligand, the temperature, the injection time and amount of DDT, the nature of the phosphorous ligand, the nature and amount of the Grignard reagent). This method involves organocopper (RCu) and organocuprate (R2Cu•MgX) compounds, both prepared in situ from commercially available copper halides and Grignard reagents. Both organocopper or organocuprate reagents were shown to undergo thermal decomposition under mild conditions to synthetize CuNPs
Vo, Nguyen Dang Khoa. "Synthèse et propriétés de nanoparticules d’or par chimie sous rayonnement utilisant des polysaccharides naturels comme agents stabilisants." Thesis, Reims, 2013. http://www.theses.fr/2013REIMS021/document.
Повний текст джерелаThe goal of this work is to develop a methodology for the synthesis of gold nanoparticles in the presence of chitosan under radiation to obtain a homogeneous object and controlled size. To reach this purpose, we will focus on the study of interactions between the ions Au(III) and chitosan in solution before irradiation. Indeed, the coordination between units of glucosamine and Au(III) promotes the reduction of Au(III) to Au(0) and the formation of gold nanoparticles. This is clearly demonstrated by the influence of pH on the formation of nanoparticles upon aging of HAuCl4 solutions in the presence of chitosan. This formulation has been used to explain the mechanism of reduction of Au(III) in the presence of chitosan in radiation. It was to define whether the reduction mechanism of ion Au(III) ions Au(0) followed a conventional process such as those described by the work of Belloni and Henglein, or if the presence of chitosan affects this process. The development of gold nanoparticles in the presence of chitosan used as a stabilizing agent was produced by the electron beam and gamma radiation. The influence of the synthesis parameters (report [GLA]/[Au (III)], sample conditioning, effect of irradiation dose, dose rate effect, role of a radical scavenger) on the characteristic gold nanoparticles was then evaluated (size, charge, surface plasmon resonance). The catalytic activity of these nanoparticles was tested towards the reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4.Keywords: gold, nanoparticles, chitosan, coordination, irradiation, electron beam, gamma radiation, 4-nitrophenol
Hallot, Gauthier. "Synthèse, caractérisations et vectorisation des nanoparticules de bismuth métallique pour des applications théranostiques." Thesis, Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=http://theses-intra.upmc.fr/modules/resources/download/theses/2019SORUS272.pdf.
Повний текст джерелаMetallic bismuth nanoparticles are poorly described in the literature and yet they have a high medical potential. Their utility is particularly described in therapeutic and/or diagnostic applications. In addition, bismuth is an abundant, inexpensive and biocompatible element. In this project, a robust and reproducible synthesis of metallic bismuth nanoparticles in water in a non-continuous process was developed by applying the principles of green nanochemistry. This synthesis was then transferred to a continuous process to increase the productivity of obtaining nanoparticles. The characterization of their surface, chemical and colloidal stability as well as their cytotoxicity were studied in order to consider their use in biological environments. Three types of hydrophilic, hydrophobic and fluorophilic nanoparticles have been obtained. Hydrophilic nanoparticles with polyethylene glycol on their surface are stable for 24 hours in saline solution. Hydrophobic nanoparticles have been incorporated into oil-in-water emulsions. On the other hand, polyfluorinated nanoparticles containing insufficient fluorine on the coating agent could not be incorporated into a fluorinated oil. Finally, a preliminary study did not show a radiosensitization effect of bismuth nanoparticles. In vitro and in vivo studies of these nanoparticles are planned to definitively conclude on their radiosensitizing effect
Mrabet, Driss. "Synthèse de matériaux nanocomposites par assemblage de nanoparticules métalliques (Au, Cu) et d'oxydes de métaux (TiO2, ZrO2) pour application en catalyse." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25081/25081.pdf.
Повний текст джерелаFouineau, Jonathan. "Synthèse de nanoparticules de chalcogénures de bismuth par chimie douce et élaboration de matériaux hybrides pour la thermoélectricité." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC176.
Повний текст джерелаThermoelectric systems allow for the direct and reversible conversion of a temperature difference into electricity. Doped semiconductors allow to obtain effective systems for a substantial difference of temperature, nevertheless they are limited to niche applications. Bi2Te3, the reference material for applications close to room temperature is, in addition, toxic and costly. Electron conducting polymers represent an alternative for low temperature thermoelectric devices rince they are flexible, light and cost¬effective, however their performance is still too low for large scale development. The objective of this thesis was to develop hybrid materials with a good control of the inorganic-organic interface in order to take advantage of both components and prepare materials with enhanced thermoelectric properties. To achieve this objective, Bi2Te3 doped with Se, S or Sb nanoparticles were synthesized using a soft chemistry route. Their mechanisms of formation in the presence of different additives have been studied and different compositions and morphologies have been obtained. Oligothiophenes molecules functionalized with thiols functions were then prepared and further grafted at the surface of synthesized nanomaterials. Finally, hybrid materials were obtained either by dispersing grafted particles into a conducting polymer matrix, or by chemical or electrochemical co-polymerization of the grafted monomer with a monomer in solution. The use of grafted particles lead to a better dispersion of the inorganic material in the polymer matrix compared to bare particles
Tihay, Fanny. "Synthèse de nanoparticules magnétiques par décomposition de clusters bi-métalliques, en matrice se silice mésoporeuse." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13158.
Повний текст джерелаWe have synthesized and characterized silica supported nanoparticles. The metallic precursors were tetrahedral carbonyl clusters of the type [CoxRu(4-x)(CO)12]n-, where x = 4 to 1, et n = 0 or 1. Two matrices have been employed : xérogels, where the pores are disordered and MCM-41, where the pores are arranged in an hexagonal array. The incorporation of the cluster to the matrices have been done by impregnation and by grafting. After thermal treatments, nanoparticles appear. They have been characterized by transmission electronic microscopy, X-Ray and electron diffraction, and by their magnetic properties. In every cases, the spatial distribution, and the size distribution of the particles are better into the organized matrix than in the xérogel. When the cluster is incorporated by impregnation, two populations of particles are observed : small ones, with a diameter equivalent to the pores' (2 nm), that do not grow with increasing temperatures of treatment, and bigger ones ( up to 50 nm) that grow on the defects of the matrices. We have shown that a segregation appears. At the beginning of the thermal treatment, pure Co and Ru nanoparticles appear, then there is interdiffusion of the metals to form alloys with the same stoichiometry than the initial cluster. When the cluster Co4(CO)10(æ-dppa) is grafted to the matrices by a modified alcoxyde, containing a phosphine group, 6 nm Co2P nanoparticles are obtained after a thermal treatment at 900 ʿC under H2. This intermetallic compound is obtained at much lower temperature than if the precursors are simply mixed
Levy, Caroline. "Synthèse d'oxydes nanophases conducteurs par chimie douce : mise en évidence de la mobilité de l'oxygène." Montpellier 2, 2003. http://www.theses.fr/2003MON20140.
Повний текст джерелаAsonkeng, Fabrice. "Synthèse de nanoparticules métalliques pour pile à combustible et dans le domaine des capteurs." Electronic Thesis or Diss., Troyes, 2022. http://www.theses.fr/2022TROY0005.
Повний текст джерелаThe development of new synthetic techniques for the fabrication of metallic nanoparticles has grown hand in hand with the increasing number of technologies such as fuel cells and optical sensors. These nanoparticles are generally composed of noble metals (gold, platinum, palladium) and exhibit extraordinary catalytic and optical properties. However, their manufacturing technique with a well-defined size and shape and monodispersity at the surface of the substrate is often complex and requires several steps.We present in this thesis, a technique of synthesis in one step and reliable which allow to fabricate the gold nanotriangles and the spherical platinum and palladium nanoparticles on various substrates. This technique consists of dissolving the metal salts in a solvent containing a polymer. The particles form directly on the substrate in real time after annealing with a specific temperature of a deposition of the metal / polymer solution. Thus, we deposited the NPs (Au, Pt, Pd) in the volume of carbon GDLs and we evaluated their catalytic activity in direct borohydride fuel cell (DBFC). Pt electrodes have shown very good performance with low loading, thus reducing the cost of the battery. In parallel, we have shown that gold nanotriangles can be used as potential substrates with multifunctional applications as optical sensors
Declerck, Valérie. "β-aminoesters insaturés obtenus par réaction d'Aza-Baylis–Hillman : des synthons multifonctionnels pour la synthèse d'hétérocycles originaux". Montpellier 2, 2006. http://www.theses.fr/2006MON20024.
Повний текст джерелаThis work was dedicated to the synthesis of original heterocyclic structures starting from Beta-aminoesters obtained via the multicomponent aza-Baylis–Hillman reaction. First of all, we have developed new conditions for the aza-Baylis–Hillman of trimethylsilylethanesulfonamide (SES–NH2), methyl acrylate and an aromatic aldehyde. This methode allowed us the preparation of a large variety of unsaturated Beta-aminoesters. These unsaturated Beta-aminoesters are multifunctional synthons for the preparation of heterocyclic structures. We have prepared five membered ring heterocycles by ring closing metathesis. The different deprotection conditions of the SES group (dehydrodesulfinyaltion and Beta-elimination) allowed the synthesis of pyrroles, pyrrolidines and pyrrolines from the same cyclic precursor. We have also prepared triazolodiazepines by the Huisgen reaction and benzazepines by the Heck reaction under microwave activation
Garnero, Cyril. "Synthèse organométallique de nanoparticules de FeCo pour l'intégration sur inductance." Thesis, Toulouse, INSA, 2016. http://www.theses.fr/2016ISAT0032/document.
Повний текст джерелаThe continuous development of telecommunication requires permanent enhancement of electronic component performances. Among them, common mode filters play a key role to cancel perturbations and thus noise in electrical transmissions. For telephony purposes, these filters must exhibit optimized properties up to high frequency ranges (GHz). These properties depend strongly on the constitutive inductors, and therefore can be significantly enhanced by the addition of a soft magnetic layer, providing that the magnetic material chosen is insulating with a high magnetic permeability and a ferromagnetic resonance frequency above the GHz.In the framework of the project “Investissement d’Avenir TOURS 2015” initiated by STMicroelectronics, we prepared composite materials loaded with FeCo nanoparticles (NPs). We developed a new chemical synthesis of FeCo NPs based on the decomposition of organometallic precursors ([Fe(N(Si(CH3)3)2)2]2 and Co(N(Si(CH3)3)2)2,THF). NP’s size (1 to 80 nm), shape (sphere, cube, and octahedron) and composition (50< Fe %< 70) can be tuned by adjusting the reaction conditions. Without requiring any annealing treatment, these FeCo NPs are highly crystalline in the body centered cubic structure and exhibit magnetic properties close to the bulk ones. A careful study, combining EELS, Mössbauer spectoscopy, zero field 59Co NMR and XRD with anomalous dispersion effect, evidenced the stabilization of the chemically ordered FeCo B2 structure under specific reaction conditions. This is the first time that such ordered structure is reported in chemically synthesized nanoparticles.In order to significantly enhance the inductors properties, a sandwich structure has been designed where the inductors are integrated on a mesoporous silicium substrate filled with FeCo NPs while an epoxy resin/FeCo Nps composite materials is deposited on top. In this aim, two FeCo nanoparticles based composite materials has been developed: - mesoporous silicium substrate exhibiting a loading of 10.1 gFeCo.m-2 were obtained through colloidal solution impregnation. The nanoparticles filled the 25-30 nm pores all along their 18 μm depth. - epoxy resin filled with nanoparticles (30% in mass) were prepared. SEM and TEM analysis confirmed that the nanoparticles are well dispersed in the polymer. After integration onto planar inductors, an increase of 17 % of the inductance value has been observed.During this project, exotic shape NPs such as FeCo octapods could be obtained. Their 3D structure, characterized by electron tomography leads to exotic magnetic configurations which were studied by electron holography
Dorais, Marie-Christine. "Développement de nanoparticules inorganiques luminescentes dopées aux lanthanides." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28332/28332.pdf.
Повний текст джерелаDepagne, Christophe. "Synthèse de micro-biocapteurs optiques par déstabilisation colloïdale en micelles inverses." Paris 6, 2009. http://www.theses.fr/2009PA066159.
Повний текст джерелаDazzazi, Anass. "Synthèse et caractérisation de nanoparticules d'oxydes métalliques par voie organométallique : vers des applications biomédicales." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/1951/.
Повний текст джерелаThis manuscript describes a collaborative work between the University of Toulouse and the University of Rabat. This work is devoted to the development of metal oxide nanoparticles (gamma-Fe2O3 and ZnO) for biological applications (MRI or optical imaging). It focuses in particular on the development of methodologies for transforming hydrophobic nanoparticles prepared following organometallic chemistry to hydrophilic ones, and to study their properties. Methodologies of solvent exchange to transfer ZnO hydrophobic nanoparticles into water using Gémini ligand have been first developed. The well known "double layer" strategy turned to be much more complicated as expected. The use of amino-PEG surfactants leads to the direct formation of water-dispersible iron oxide nanoparticles. In a second step, the physical properties (optical or magnetic properties) of such nanoparticles were studied either in organic media or in water. In particular, we demonstrated that the optical properties of the ZnO nanoparticles are independent of the solvent but strongly depend on the surface state of the nanoparticles. The first example of a photocommutation of ZnO nanoparticles by a diarylethene photochromic dye has been described. Finally, ZnO nanoparticles stables in buffered solutions have been obtained and the first observation with a fluorescence microscope performed. The iron oxide nanoparticles have been tested as MRI contrast agents
Skarbek, Charles. "Synthèse et évaluation pharmacologique d’analogues préactivés de l’ifosfamide : prodrogues et nanoparticules à visée antitumorale." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS247/document.
Повний текст джерелаIfosfamide (IFO) and cyclophosphamide (CPM) are oxazaphosphorines, prodrugs requiring bioactivation to be active. Regarding IFO, its biotransformation leads to a low release of the active hydroxylated compound with associated toxic side effects. Preactivated IFO analogs with saturated or unsaturated C1-C30 chains have been developed to circumvent these toxicities related to the toxicogenic pathway of metabolism. As part of IFO's pharmaco-modulation strategy, the cytotoxic evaluation of these compounds, synthesized by engraftment of poly-isoprenyloxy chains, was carried out in vitro on human cancer cell lines. In vivo study of the lead shows the better pharmacokinetic profile of Geranyloxy-IFO compared to IFO. These analogs were then vectorized as nanosystems, either by self-assembly or by lipidic encapsulation leading to 1st generation nanosystems. They are still under investigation in order to bring specificity by passive or active targeting.Furthermore, CPM is known for having an activity on the immune system at low dose. Due to the structural proximity of IFO and CPM, we fulfilled studies to highlight the effect of IFO on the immune system at low dose in comparison to the immunomodulatory dose of CPM.The combination of these two strategies (preactivation & immunomodulatory effect) could lead to the development of novel derivatives showing an antitumor synergy of the antiproliferative and immunomodulatory effects of these oxazaphosphorines
Portehault, David. "Synthèse par chimie douce en milieu aqueux d'oxydes de manganèse nano-structurés : des matériaux pour batteries au lithium ?" Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00812589.
Повний текст джерелаBeji, Zyed. "Synthèse par chimie douce et caractérisation de poudres et de films nanocristallins de ferrites mixtes de Ni - Zn : études des propriétés magnétiques statiques." Paris 7, 2008. http://www.theses.fr/2008PA077203.
Повний текст джерелаNi-Zn soft ferrite thin films are promising materials for many applications in the hyperfrequency field. The preparation of nanocristalline films based on these materials and the comprehension of their static magnetic properties related to their structure and microstructure are primordial to control their dynamic magnetic properties and consequently, to integrale them, in an optimized way, as miniaturized devices. Ni₁₋xZnxFe₂O₄ powder and films have been prepared by the polyol method. Synthesis optimization allowed us to have fine and monodispersed nanoparticles. Films of micrometric thickness were obtained as well. Nanocristalline film structure was confirmed by X ray diffraction and also by transmission electronic microscopy. EXAFS and Mössbauer experiments conducted on the as-produced powders and films show that their structure is different from the thermodynamically stable one. Magnetic studies of the powder and the Ni ₁₋xZnxFe₂O₄ films showed that they present a superparamagnetic behaviour at room temperature. While powder magnetization was relatively high and close to bulk materials, film magnetization was low. This behavior was due to the film densification with interface formation between the nanocristals (such as grain boundaries) and also to the installation of cooperative phenomena. Our study proved that the thermal treatment does not take part in the improvement of the film magnetic properties
Denoix, Arthur. "Étude et synthèse par chimie douce de nanoparticules de β-Zn4Sb3 pour la réalisation de composants thermoélectriques par des solutions d’impression". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20192/document.
Повний текст джерелаUse of thermoelectricy involves an increase of the module efficiency. In this purpose we need to optimize the dimension of the module and to increase the figure of merit of thermoelectric materials. But we also need to reduce the synthesis and shaping cost. Within the framework of this thesis, we focused on the synthesis of β-Zn4Sb3 nanoparticles by a low energy technique: wet chemistry. We also studied the shaping of this material by printing technologies. These cost-effective technologies allow reaching optimized dimensions. β-Zn4Sb3 is synthesized in two steps: a reflux synthesis flowed by a thermal treatment at 400 °C under vacuum. Chemical composition (XRD, Rietveld refinement), morphology (SEM, TEM) and thermal stability of the powder are studied. The as product β-Zn4Sb3 is densified by SPS and we measured its properties. They show an increase of the figure of merit for temperatures below 100 °C. However above this temperature the presence of zinc and porosity increase electric resistivity and thermal conductivity, leading to a figure of merit of 0.6 at 400 °C. Finally the powder is shaped by two printing technologies: screenprinting and atomization on glass and Kapton substrate. Just after printing the samples show a high electrical resistivity but a decrease is observed after mechanical and thermal treatment. The estimate figure of merit of printing β-Zn4Sb3 is 0.06 at 400 °C. However the printing techniques are cost-effective and allow mass production, which make them still interesting
Ksar, Faycal. "Synthèse de nouvelles nanostructures à base de palladium : application en électro-catalyse." Paris 11, 2010. http://www.theses.fr/2010PA112213.
Повний текст джерелаThree-dimensional connected Pd nanowires forming nanoballs have been synthesized by slow reduction of Pd(II) in hexagonal mesophases made by a quaternary system (water/cyclohexane/surfactant/cosurfactant). Both confinement and slow reduction are necessary to obtain these new nanostructures. Palladium nanowires (of length a few tens of nanometers) are synthesized in a hexagonal mesophase formed by a quaternary system (Pd-doped water, surfactant, cosurfactant, and oil) by electron beam irradiation. The mesophases can be doped by high concentrations of palladium (0. 1 M) without any disturbance of the structure of the mesophases which allows the quantitative synthesis of 1D Pd nanostructures. We found an increase in the average length of the nanowires with the amount of cosurfactant (pentanol) that assists the reduction/growth processes. Bimetallic Pd-Au nanostructures were synthesized in the soft templates provided by surfactant hexagonal mesophases. The nanostructures are constituted by a core rich in gold and a Pd porous shell. The electrocatalytic activity of these nanostructures for ethanol oxidation in basic medium was compared with that of alloyed Pd-Au nanoparticles synthesized in solution. The Pd-Au alloy is active toward the oxidation of ethanol in an alkaline medium but is not durable in realizing this process. The electrocatalytic oxidation of ethanol was selected as a test reaction in alkaline medium where Pd is known to be among the best electrode materials
Blanchette, Maxime. "Synthèse et caractérisation de nanoparticules de fluorures d'yttrium et de fluorure de gadolinium pour des fins d'imagerie médicale." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30432/30432.pdf.
Повний текст джерелаThe synthesis of yttrium fluoride nanoparticles within reverse microemulsions produces monodisperse population of single crystals of well-defined size and with an octahedral shape. The main advantage of yttrium fluoride is that it can be doped, without loss of crystal structure, in order to confer dopant’s intrinsic properties. Adding a shell of lanthanide fluoride is also possible. Furthermore, the synthesis of nanoparticles for the medical imaging allows to increase the sensor’s sensibility since they contain more active ions then their organic equivalents which, often, contain only one. As part of this project, the lanthanide used as a dopant or to make a shell is gadolinium. Thus, relaxometric properties of different types of nanoparticles, synthetized by the single reverse microemulsion method, are measured and compared. Addition of a silica shell is made in order to increase the colloidal stability of aqueous suspension. Keywords: Gadolinium fluoride, Micelles, Nanoparticles, Reversed microemulsion, Silica shell, Yttrium fluorire.
Neabo, Jules Romeo. "Synthèse des matériaux riches en carbone à partir de la polymérisation topochimique des diacétylènes." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30071/30071.pdf.
Повний текст джерелаThe present thesis describes two strategies toward the synthesis of carbon-rich nano-objects namely organic nanotubes and graphene-like materials. The common point of our methodology is based on topochemical polymerization of phenyl-terminated diacetylene units derivatives. The proof-of-concept regarding the topochemical polymerization of diarylbutadiyne derivatives in the gel state is presented in chapter two. The same strategy is used to study the topochemical polymerization of octatetrayne derivatives in the same state. Optical properties show that the resulting material is made of carbon-rich nanoparticles with variable sizes. The overall results are included in chapter three. Chapter four describes the synthesis of polydiacetylene nanowires by topochemical polymerization of star-shaped molecules containing diarylbutadiyne moieties. The chapter five, which is the most important, describes the synthesis of defect-free graphene-like material from temperature mediated cycloaromatization reaction of 2D polydiacetylene obtained by topochemical polymerization of oligomers of diarylbutadiyne precursor. Finally, chapter six presents attempt toward the synthesis of organic nanotubes from topochemical polymerization of diacetylene from meta-poly(phenyl butadiyne) foldamers.
Laurent, Pierre. "Approche moléculaire du design et de la synthèse de nanoparticules supportées et non-supportées à base de Pt et Pd." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00980065.
Повний текст джерелаAyadi, Sondra. "Nouveaux nanomatériaux hybrides métal/hydroxyde de fer. Synthèse, caractérisation et application à la catalyse chimique et électrochimique." Thesis, Evry-Val d'Essonne, 2015. http://www.theses.fr/2015EVRY0011/document.
Повний текст джерелаWe developed simple, fast and "green" synthesis of new nanohybrids, composed of metal nanoparticles supported on inorganic matrix of iron hydroxide. Their synthesis in suspension involves first, the formation of the FeII-bearing inorganic solid matrix, then the reaction with metal salt solution, in the same reactor. Three inorganic matrices (carbonated or sulfated green rusts (GRc or GRs) and chukanovite Chu) and three metals (Au, Ag and Pt) were studied. The nanohybrids, noted metal-exMatrix, were characterized by XRD, FTIR, SEM, TEM and voltammetry. The matrix acts as a reducing agent supplying electrons by solid state oxidation, and also as the support of metal nanoparticles. Two reaction mechanisms with intra- or inter-particle electron transfer are proposed. Nanoparticles sizes vary between 20 and 200 nm. The first application involves the building of amperometric H2O2 sensors. Carbon ink electrodes incorporating silver-based nanohybrids, particularly Ag-exRVs, or platinum, Pt-exChu, provide electrochemical catalytic properties, enabling us to quantify the peroxide by its electrochemical response in reduction or oxidation. For the second application, the reduction reaction of 4-nitrophenol by borohydride, we showed that our nanohybrids were more efficient catalysts than the best current materials, with similar metal load and temperature
Asila, Victoire. "Syntheses of N-Heterocyclic carbenes-stabilized metallic nanoclusters and nanoparticles." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS087.pdf.
Повний текст джерелаIn this work we developed a new synthesis of phosphine and N-heterocyclic carbenes (NHCs)-stabilized gold nanoclusters (AuNCs) through the reduction of AuClPPh3 by NaBH4 in the presence of imidazolium salts as NHC precursors. The samples were characterized by various techniques, especially electrospray ionization mass spectrometry (ESI-MS). Most of the nanoclusters which were obtained are stabilized by PPh3. However, a very stable Au11(PPh3)7(NHC)Br2+ nanocluster was synthesized. The follow-up of the aging of the samples by ESI-MS showed the evolution of the composition of the suspensions over time. Less stable nanocluster structures did not remain in suspension with aging. Then, a second synthesis was performed by reduction of HAuCl4.3H2O by NaBH4 in the presence of imidazolium salts as NHC precursors and NaH as base. Gold nanoclusters stabilized by NHCs were obtained with different gold nuclearities. A strong effect of the NHC ligand on the nature of the obtained nanoclusters was revealed. Synthesis with the imidazolium salt 1,3-didodecylimidazoliumbromide (C12-Br) allowed the formation of very stable [Au13(C12)9Br3]2+ nanocluster. Finally, the synthesis of Ag2S nanoparticles stabilized by water-soluble NHCs has been reported. A silver-NHC complex was synthesized and then placed in the presence of an S2- source. The synthesis by microwave heating gave promising results since Ag2S nanoparticles emitting in the second infrared window was demonstrated. Indeed, this is the window of transparency of biological tissues which is of interest for biological applications
Taiariol, Ludivine. "Immunociblage bioorthogonal de nanoparticules radiosensibilisantes pour une application en radiothérapie externe." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAS024.
Повний текст джерелаIn the last few years, nanoparticles (NP) have been of growing interest in the field of oncology for enhancing the therapeutic efficacy of cancer treatment modalities. These organic or inorganic NPimprove the effectiveness of some pre-existing treatments as surgery, cancer chemotherapy andimmunotherapy. With regard to radiotherapy, one of the principal means of patient cancertreatment, it has to face the increasing number of tumors described as “radioresistant” due to lowdoses often delivered in order to limit the effect of radiation on healthy tissue. One of the mostpromising strategy relies on high atomic number NP (e.g. gold, platinum, hafnium or gadolinium)used as radiosensitizers for their capacity to enhance radiation damage once in the tumormicroenvironment. This technological advance could getting an unprecedented development if theirtumor concentration was not only based on passive targeting via the EPR effect, but on the tumorspecific targeting for potentiating the effect of ionizing radiations while limiting side effects to healthytissues and thus improving therapeutic efficacy.Thus, the work reported in this thesis concerns the development of silica NP constituted of afluorescent core of rhodamine, chelating several gadolinium atoms and able to specifically targetcancer cells with an immunopretargeting system based on SPAAC («Strain Promoted Alkyne-AzideCycloaddition ») bioorthogonal chemistry. This strategy relies on the two-step active targeting: (1) anantibody modified by an azide bioorthogonal entity would first be administered; (2) then, NPfunctionalized with complementary bioorthogonal entities (azadibenzylcyclooctyne, ADIBO) would beinjected in a second time after clearance of the modified antibody not located at the tumor site. Thespecific covalent binding NP/antibody via the SPAAC ligation (ADIBO/N3) should thus permit toimprove NP tumor concentration and potentiate their therapeutic effect.NP surface functionalization was performed according to an automated supported synthesisusing phosphoramidite chemistry. This technique allowed the surface incorporation of the ADIBObioorthogonal entities and also of the macrocycles DOTA for gadolinium chelation. Grafting of thedifferent chemical functions and molecules and their quantification were conducted by variouscharacterization techniques (fluorescence, absorption, DLS, ICP-MS). In the second part of this work,antibodies were efficiently functionalized by azide bioorthogonal entities, complementary of ADIBOfunctions according to SPAAC ligation. After quantification and validation of their reactivity by MALDI-TOF and fluorescence studies, the best immunoconjugate has been selected to perform in vitrostudies by confocal microscopy. Despite different studies carried out in this project, it has not beenyet possible to demonstrate the feasibility of this approach. Nevertheless, these NP obtained withboth bioorthogonal entities and gadolinium atoms suggests other interesting perspectives for application as theranostics
Dai, Shan. "Synthèse ambiante verte de solides hybrides poreux (MOFs) robustes et de composites nanoparticules métalliques@MOFs." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE068.
Повний текст джерелаHeterogeneous catalysts frame a cornerstone of the chemical industry and are one of the most crucial technologies for a sustainable future. Hybrid materials represent a very exciting direction for developing innovative catalysts. Incorporating guest metal nanoparticles (MNPs) into Metal-Organic Frameworks (MOFs) is an effective route to prepare highly efficient heterogeneous catalysts, which combines the properties of both the host MOF and guest MNPs. The prepared composites present a great potential for several applications apart from catalysis (e.g. sensing, bio-applications), as the encapsulated guest materials can introduce new desired properties that are absent/ poor in the parent material. In this thesis, MNPs and MOFs composites were prepared through challenging bottle-around-ship strategy. As the first step, multiple approaches were developed to prepare robust tetravalent Metal-organic frameworks (MOFs) at room temperature, including conventional stepwise and more facile direct strategies. Subsequently, the new room temperature synthesis approaches were adapted to incorporate ultra-small MNPs into the MOF to reproducibly form core-shell MNPs@MOF composites, prior to addressing several heterogeneous catalysis challenges (e.g., CO2 reduction, peptide hydrolysis)
Souaid, Eddy. "De la chimie prébiotique à l'élaboration de nanomatériaux : synthèse et caractérisation de poly-lysines dendrimère greffés." Montpellier 2, 2005. http://www.theses.fr/2005MON20230.
Повний текст джерелаWhen copolymerizing -aminoacids-NCA in water at pH 6. 5, the formation of hydrosoluble copolypeptides was observed. That proves that the concept described by the primary pump for peptide synthesis is valid. During the copolymerization, the competitive formation of hydrophobic peptides with narrow molar mass distribution was observed. These peptides can be easily separated from the reaction medium. In the second part of this work, we used this observation for synthesizing original nanomaterials with auto-controlled structures (namely the dendrigraft polylysines, DGPK). The auto-control of the structure and the reproducibility in the synthesis were ensured the hydrophobicity and the precipitation of the intermediate compounds obtained at each generation. The DGPK were characterized by different techniques such as MALDI-TOF mass spectrometry, capillary electrophoresis, size exclusion chromatography coupled to a double or a triple detection, NMR, and Taylor diffusion analysis. DGPK are highly branched materials with physico-chemical behaviour close to dendrimers of functionality 3 (exponential growth of the molar mass and linear variation of the hydrodynamic radius with the generation, maximum of intrinsic viscosity for the fourth generation)
Gervaise, Cédric. "Nanovecteurs à base de cyclodextrines amphiphiles." Amiens, 2012. http://www.theses.fr/2012AMIE0100.
Повний текст джерелаTo improve drugs delivery through biological membranes, the preparation of nanovectors with drug inside can be developed. The Blood Brain Barrier (BBB) is an efficient biological barrier which protects the brain but it prevents many drugs from passing into the brain reducing efficacy of the treatment of tumors or Alzheimer’s disease for example. Nanovectors based on amphiphilic cyclodextrins have been planned to cross the BBB without toxicity. Two new amphiphilic cyclodextrins families have been synthesized: Glycerolipidyl-Cyclodextrins by chemo-enzymatic way and Lipophosphoramidyl-Cyclodextrins, using the Atherton-Todd reaction. Tensioactive properties of compounds of these two families were interesting. A compound has been chosen to form nanoparticles in different aqueous solutions which were able to encapsulate drugs First results on in vitro BBB model have shown improvement of drug quantity which crossed the BBB when drug was encapsulated
Magnan, François. "Synthèse et caractérisation de systèmes colloïdaux à géométrie coeur/coquille d'indium-silice Vers une application en biodétection." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29953/29953.pdf.
Повний текст джерелаA notable application of nanomaterials is the use of metallic nanoparticles (NPs) as optical bioprobes in Raman or fluorescence spectroscopy detection schemes. Such a use is permitted by the plasmonic properties shown by these NPs upon light irradiation; the spectroscopic properties of these colloids are tuned through careful selection of the core’s composition, size and environment. Gold and silver are the two most commonly used metals for biodetection as they are easily prepared in nanoscopic regimes with defined shapes and sizes, as well as for their intense optical interactions with visible light. These metals are however not applicable at higher energy UV regimes, which would allow, for instance, the enhancement of the intrinsic fluorescence of proteins, a field of interest in biodetection which is hindered by the extremely low fluorescence signal of these biomolecules. We propose for such an application the use of indium-based plasmonic probes, as this metal has been shown to be active in the UV regime. This master’s thesis thus focuses on the preparation of core-shell colloids for an eventual use in biodetection. The indium cores are prepared in a single step which combines both polyol and hot-injection methods characteristics. By shuffling various synthetic parameters, indium cores approximately 9 and 70 nanometers (nm) wide are obtained. The larger cores, which should demonstrate a stronger fluorescence enhancement effect, are then covered with a silica shell through a single Stöber-like step. Again, controlling different synthetic parameters such was water content, silica precursor concentration, and Stöber system dilution allows to modulate the silica’s thickness between 4 and 40 nm. Such a thin silica shell on such a relatively small indium core is, at the best of our knowledge, still unprecedented. The synthesized core-shell colloids are characterized with UV-Vis spectroscopy, transmission electron microscopy and dynamic light scattering.
Tableau d'honneur de la FÉSP
Nguyen, Anh. "Synthèse et évaluation biologique de nouveaux dérivés organométalliques du tamoxifène pour le diagnostic et le traitement du cancer du sein." Phd thesis, Paris 6, 2007. http://pastel.archives-ouvertes.fr/pastel-00003191.
Повний текст джерелаMornet, Stéphane. "Synthèse et modification chimique de la surface de nanoparticules de maghémite à des fins d'applications biomédicales." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2002. http://tel.archives-ouvertes.fr/tel-00128139.
Повний текст джерелаmodifiées en surface par des agents de couplage silaniques organofonctionnels suivi du greffage covalent des macromolécules. Les nanovecteurs, ont ensuite été marqués par des sondes fluorescentes pour réaliser des
tests in vitro de double marquage (IRM, fluorescence) de microglies humaines (HEMC5).
Lancien, Antoine. "Synthèse d’amines bio-sourcées à l’aide de procédés hybrides combinant des nanoparticules métalliques supportées et des transaminases." Thesis, Université de Lille (2018-2021), 2021. https://pepite-depot.univ-lille.fr/ToutIDP/EDSMRE/2021/2021LILUR059.pdf.
Повний текст джерелаThe objective of hybrid catalysis is to exploit the advantages of biological and chemical catalysts to access new synthetic routes that cannot be performed independently or to perform transformations that have shown low yields with conventional approaches. 5-Hydroxymethylfurfural (HMF) is a versatile platform (or building block) molecule that can be used in many industrial applications. In particular, the synthesis of biosourced amino polymers represents a promising method for its valorization. To date, very few studies have described the production of these amino derivatives and their polymers. Finding an efficient methodology to directly convert HMF to 5-aminomethyl-2-furancarboxylic acid (AMFC) is therefore a significant challenge. After selecting the best oxidation catalyst for the conversion of HMF to 5-aldehyde-2-furancarboxylic acid and immobilizing a transaminase on a solid support, we were able to implement the first "one-pot two-step" hybrid catalytic process to produce FMCA (77% yield). With 2,5-furandicarboxylic acid (FDCA, 23% yield) as the sole by-product, this represents the most efficient direct catalytic production method of FMCA from HMF reported to date. In addition, a hybrid "one-pot one-step" process for integrated production of FMCA from HMF was also developed with a maximum yield of 20%, this represents a first breakthrough for this platform molecule, and a first achievement for French hybrid catalysis. Finally, the synthesis of a hybrid multi-catalytic material combining palladium nanoparticles and a transaminase, on an EziGTMOPAL support, was achieved and its application led to a final yield of 10% in FMCA. Finally, this concept was also applied to the conversion of a panel of bio-sourced molecules, with in particular the transformation of myrtenol into its amino equivalent according to a "one-pot two-step" process with a yield higher than 99%
Sodreau, Alexandre. "Design de précurseurs organométalliques et synthèse contrôlée de nano-objets de germaniure de fer." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30290/document.
Повний текст джерелаControlled synthesis of nano-alloys of iron germanide has gained a renewed interest thanks to the recent discovery of new applications in the field of information storage. However, the chemistry of the iron-germanium pair is a complex chemistry that remains little studied. The work presented in this thesis combines molecular chemistry and nano-object chemistry to explore the potential of single-source precursors for solution synthesis, in soft conditions, of iron germanium NPs. First, we focused on the formation of new complexes with an amidinatogermylene-type architecture offering a balance between the stabilization of complexes and their decomposition temperatures, for example mono-germylene iron complexes {[iPrNC(tBu)NiPr]GeCl}Fe(CO)4 and {[iPrNC(tBu)NiPr]GeHMDS}Fe(CO)4 or the bis-germylene iron complex {[iPrNC(tBu)NiPr]GeCl}2Fe(CO)3. In a second step, we show that this method represents a path of choice to reach the formation of nano-alloys of iron germanide and that the architecture of the mono-source precursors allows to control the final nanoparticles. In particular, the decomposition at 200°C. of the {[iPrNC(tBu)NiPr]GeHMDS}Fe(CO)4 complex leads to the formation of Fe3,2Ge2 spherical nanoparticles, with a mean diameter of 6.5 ± 0.8 nm, exhibiting a ferromagnetic behavior
Virieux, Héloïse. "Nanocristaux luminescents de phosphures d'indium et de zinc: synthèse, enrobage et caractérisation." Phd thesis, INSA de Toulouse, 2013. http://tel.archives-ouvertes.fr/tel-00933595.
Повний текст джерела