Статті в журналах з теми "Nanoparticle Superlattices"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nanoparticle Superlattices.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nanoparticle Superlattices".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ross, Michael B., Jessie C. Ku, Martin G. Blaber, Chad A. Mirkin, and George C. Schatz. "Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices." Proceedings of the National Academy of Sciences 112, no. 33 (August 3, 2015): 10292–97. http://dx.doi.org/10.1073/pnas.1513058112.

Повний текст джерела
Анотація:
Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. Here, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (∼5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter) each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. These data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Jiaming, Rongjuan Liu, Zhijie Yang, and Jingjing Wei. "Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly." Chemical Communications 58, no. 23 (2022): 3819–22. http://dx.doi.org/10.1039/d2cc00330a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prasad, B. L. V., C. M. Sorensen, and Kenneth J. Klabunde. "Gold nanoparticle superlattices." Chemical Society Reviews 37, no. 9 (2008): 1871. http://dx.doi.org/10.1039/b712175j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Radha, Boya, Andrew J. Senesi, Matthew N. O’Brien, Mary X. Wang, Evelyn Auyeung, Byeongdu Lee, and Chad A. Mirkin. "Reconstitutable Nanoparticle Superlattices." Nano Letters 14, no. 4 (March 18, 2014): 2162–67. http://dx.doi.org/10.1021/nl500473t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Park, Daniel J., Jessie C. Ku, Lin Sun, Clotilde M. Lethiec, Nathaniel P. Stern, George C. Schatz, and Chad A. Mirkin. "Directional emission from dye-functionalized plasmonic DNA superlattice microcavities." Proceedings of the National Academy of Sciences 114, no. 3 (January 4, 2017): 457–61. http://dx.doi.org/10.1073/pnas.1619802114.

Повний текст джерела
Анотація:
Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Кособукин, В. А. "Спектроскопия плазмон-экситонов в наноструктурах полупроводник-металл". Физика твердого тела 60, № 8 (2018): 1606. http://dx.doi.org/10.21883/ftt.2018.08.46256.18gr.

Повний текст джерела
Анотація:
AbstractThe results of the theory considering mixed plasmon-excitonic modes and their spectroscopy are presented. The plasmon-excitons are formed owing to strong Coulomb coupling between quasi-two-dimensional excitons of a quantum well and dipole plasmons of nanoparticles. The effective polarizability associated with a nanoparticle is calculated in a self-consistent approximation taking into account the local field determined by in-layer dipole plasmons and their image charges due to the excitonic polarization of a near quantum well. The spectra of elastic scattering and specular reflection of light are investigated in cases of a single silver nanoparticle and a monolayer of such particles situated in close proximity to a quantum well GaAs/AlGaAs. The optical spectra show a two-peak structure with a deep and narrow dip in the resonant range of plasmon-excitons. Propagation of plasmon-excitonic polaritons is discussed for periodic superlattices whose unit cell consists of a quantum well and a layer of metal nanoparticles. The superradiance regime originating in the Bragg diffraction of plasmon-excitonic polaritons by the superlattice is investigated. It is shown that the broad spectrum of plasmonic reflection depending on the number of unit cells in a superlattice also has a narrow dip at the exciton frequency.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Podsiadlo, Paul, Galyna V. Krylova, Arnaud Demortière, and Elena V. Shevchenko. "Multicomponent periodic nanoparticle superlattices." Journal of Nanoparticle Research 13, no. 1 (December 31, 2010): 15–32. http://dx.doi.org/10.1007/s11051-010-0174-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nishida, Naoki, Edakkattuparambil S. Shibu, Hiroshi Yao, Tsugao Oonishi, Keisaku Kimura, and Thalappil Pradeep. "Fluorescent Gold Nanoparticle Superlattices." Advanced Materials 20, no. 24 (December 16, 2008): 4719–23. http://dx.doi.org/10.1002/adma.200800632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shevchenko, E. V., J. Kortright, D. V. Talapin, S. Aloni, and A. P. Alivisatos. "Quasi-ternary Nanoparticle Superlattices Through Nanoparticle Design." Advanced Materials 19, no. 23 (December 3, 2007): 4183–88. http://dx.doi.org/10.1002/adma.200701470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ouyang, Tianhao, Arash Akbari-Sharbaf, Jaewoo Park, Reg Bauld, Michael G. Cottam, and Giovanni Fanchini. "Self-assembled metallic nanoparticle superlattices on large-area graphene thin films: growth and evanescent waveguiding properties." RSC Advances 5, no. 120 (2015): 98814–21. http://dx.doi.org/10.1039/c5ra22052a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mehdizadeh Taheri, Sara, Steffen Fischer, and Stephan Förster. "Routes to Nanoparticle-Polymer Superlattices." Polymers 3, no. 2 (March 24, 2011): 662–73. http://dx.doi.org/10.3390/polym3020662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kostiainen, Mauri A. "Protein cage directed nanoparticle superlattices." Acta Crystallographica Section A Foundations and Advances 77, a2 (August 14, 2021): C339. http://dx.doi.org/10.1107/s0108767321093466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Macfarlane, R. J., M. R. Jones, B. Lee, E. Auyeung, and C. A. Mirkin. "Topotactic Interconversion of Nanoparticle Superlattices." Science 341, no. 6151 (August 22, 2013): 1222–25. http://dx.doi.org/10.1126/science.1241402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Liu, W., M. Tagawa, H. L. Xin, T. Wang, H. Emamy, H. Li, K. G. Yager, F. W. Starr, A. V. Tkachenko, and O. Gang. "Diamond family of nanoparticle superlattices." Science 351, no. 6273 (February 4, 2016): 582–86. http://dx.doi.org/10.1126/science.aad2080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zhang, Honghu, Wenjie Wang, Surya Mallapragada, Alex Travesset, and David Vaknin. "Macroscopic and tunable nanoparticle superlattices." Nanoscale 9, no. 1 (2017): 164–71. http://dx.doi.org/10.1039/c6nr07136h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Faisal, Rina Muhammad. "Langmuir‐Blodgett Assembly to order Nanoparticles and Colloidal Objects." British Journal of Multidisciplinary and Advanced Studies 3, no. 2 (November 4, 2022): 1–5. http://dx.doi.org/10.37745/bjmas.2022.0034.

Повний текст джерела
Анотація:
Bottom-up assembly of nanoparticles and colloidal objects pose a formidable challenge when processing devices. Speed, compatibility with various materials, defect tolerance and cost effectiveness are among the desired properties of a suitable nanoscale assembly process. In this regard, the Langmuir‐Blodgett (LB) technique is a highly sought-after candidate which aids in arranging a large number of nanostructures on solid surfaces. This mini-review aims to provide a concise account on the LB technique and four distinct ways of how it allows to assemble systems made of nanoparticles and colloidal objects: namely, close-packed nanoparticle superlattices by compression, micrometer scale nanoparticle fingering patterns by dip coating, single nanoparticle lines by stick-slip deposition and one-step patterning of aligned nanowire arrays.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mao, Runfang, Evan Pretti, and Jeetain Mittal. "Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices." ACS Nano 15, no. 5 (May 3, 2021): 8466–73. http://dx.doi.org/10.1021/acsnano.0c10874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Santos, Peter J., Paul A. Gabrys, Leonardo Z. Zornberg, Margaret S. Lee, and Robert J. Macfarlane. "Macroscopic materials assembled from nanoparticle superlattices." Nature 591, no. 7851 (March 24, 2021): 586–91. http://dx.doi.org/10.1038/s41586-021-03355-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Qi, Limin. "Nonclassical crystallization pathways of nanoparticle superlattices." Chinese Science Bulletin 65, no. 5 (February 1, 2020): 329–30. http://dx.doi.org/10.1360/tb-2019-0789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Carvajal, Joan J. "Quasicrystalline Order Revealed in Nanoparticle Superlattices." MRS Bulletin 34, no. 12 (December 2009): 892. http://dx.doi.org/10.1557/mrs2009.203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Shevchenko, Elena V., Dmitri V. Talapin, Nicholas A. Kotov, Stephen O'Brien, and Christopher B. Murray. "Structural diversity in binary nanoparticle superlattices." Nature 439, no. 7072 (January 2006): 55–59. http://dx.doi.org/10.1038/nature04414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Talapin, Dmitri V., Elena V. Shevchenko, Christopher B. Murray, Alexey V. Titov, and Petr Král. "Dipole−Dipole Interactions in Nanoparticle Superlattices." Nano Letters 7, no. 5 (May 2007): 1213–19. http://dx.doi.org/10.1021/nl070058c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Rigby, Pauline. "New building blocks for nanoparticle superlattices." Materials Today 11, no. 1-2 (January 2008): 13. http://dx.doi.org/10.1016/s1369-7021(07)70343-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sealy, Cordelia. "Nanoparticle superlattices shape-up under pressure." Materials Today 11, no. 11 (November 2008): 15. http://dx.doi.org/10.1016/s1369-7021(08)70233-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Mazid, Romiza R., Kae Jye Si, and Wenlong Cheng. "DNA based strategy to nanoparticle superlattices." Methods 67, no. 2 (May 2014): 215–26. http://dx.doi.org/10.1016/j.ymeth.2014.01.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kahn, Jason S., Brian Minevich, and Oleg Gang. "Three-dimensional DNA-programmable nanoparticle superlattices." Current Opinion in Biotechnology 63 (June 2020): 142–50. http://dx.doi.org/10.1016/j.copbio.2019.12.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Olichwer, Natalia, Andreas Meyer, Mazlum Yesilmen, and Tobias Vossmeyer. "Gold nanoparticle superlattices: correlating chemiresistive responses with analyte sorption and swelling." Journal of Materials Chemistry C 4, no. 35 (2016): 8214–25. http://dx.doi.org/10.1039/c6tc02412b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Julin, Sofia, Antti Korpi, Nonappa Nonappa, Boxuan Shen, Ville Liljeström, Olli Ikkala, Adrian Keller, Veikko Linko, and Mauri A. Kostiainen. "DNA origami directed 3D nanoparticle superlattice via electrostatic assembly." Nanoscale 11, no. 10 (2019): 4546–51. http://dx.doi.org/10.1039/c8nr09844a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Lin, Qing-Yuan, Jarad A. Mason, Zhongyang Li, Wenjie Zhou, Matthew N. O’Brien, Keith A. Brown, Matthew R. Jones, et al. "Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly." Science 359, no. 6376 (January 18, 2018): 669–72. http://dx.doi.org/10.1126/science.aaq0591.

Повний текст джерела
Анотація:
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Olichwer, Natalia, Tönjes Koschine, Andreas Meyer, Werner Egger, Klaus Rätzke, and Tobias Vossmeyer. "Gold nanoparticle superlattices: structure and cavities studied by GISAXS and PALS." RSC Advances 6, no. 114 (2016): 113163–72. http://dx.doi.org/10.1039/c6ra24241c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sun, Lin, Haixin Lin, Kevin L. Kohlstedt, George C. Schatz, and Chad A. Mirkin. "Design principles for photonic crystals based on plasmonic nanoparticle superlattices." Proceedings of the National Academy of Sciences 115, no. 28 (June 25, 2018): 7242–47. http://dx.doi.org/10.1073/pnas.1800106115.

Повний текст джерела
Анотація:
Photonic crystals have been widely studied due to their broad technological applications in lasers, sensors, optical telecommunications, and display devices. Typically, photonic crystals are periodic structures of touching dielectric materials with alternating high and low refractive indices, and to date, the variables of interest have focused primarily on crystal symmetry and the refractive indices of the constituent materials, primarily polymers and semiconductors. In contrast, finite difference time domain (FDTD) simulations suggest that plasmonic nanoparticle superlattices with spacer groups offer an alternative route to photonic crystals due to the controllable spacing of the nanoparticles and the high refractive index of the lattices, even far away from the plasmon frequency where losses are low. Herein, the stopband features of 13 Bravais lattices are characterized and compared, resulting in paradigm-shifting design principles for photonic crystals. Based on these design rules, a simple cubic structure with an ∼130-nm lattice parameter is predicted to have a broad photonic stopband, a property confirmed by synthesizing the structure via DNA programmable assembly and characterizing it by reflectance measurements. We show through simulation that a maximum reflectance of more than 0.99 can be achieved in these plasmonic photonic crystals by optimizing the nanoparticle composition and structural parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Zhang, Fenghua, Jingjing Wei, and Zhijie Yang. "Nanoparticle superlattices enabled by soft epitaxial strategy." SCIENTIA SINICA Chimica 51, no. 6 (May 19, 2021): 751–60. http://dx.doi.org/10.1360/ssc-2021-0014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Cheng, Ho Fung, Max E. Distler, Byeongdu Lee, Wenjie Zhou, Steven Weigand, and Chad A. Mirkin. "Nanoparticle Superlattices through Template-Encoded DNA Dendrimers." Journal of the American Chemical Society 143, no. 41 (October 11, 2021): 17170–79. http://dx.doi.org/10.1021/jacs.1c07858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lewis, Diana J., Leonardo Z. Zornberg, David J. D. Carter, and Robert J. Macfarlane. "Single-crystal Winterbottom constructions of nanoparticle superlattices." Nature Materials 19, no. 7 (March 16, 2020): 719–24. http://dx.doi.org/10.1038/s41563-020-0643-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Li, Jun, Yiliguma Yiliguma, Yifei Wang, and Gengfeng Zheng. "Carbon-coated nanoparticle superlattices for energy applications." Nanoscale 8, no. 30 (2016): 14359–68. http://dx.doi.org/10.1039/c6nr03243e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Labastide, Joelle A., Mina Baghgar, Irene Dujovne, Yipeng Yang, Anthony D. Dinsmore, Bobby G. Sumpter, Dhandapani Venkataraman, and Michael D. Barnes. "Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications." Journal of Physical Chemistry Letters 2, no. 24 (November 30, 2011): 3085–91. http://dx.doi.org/10.1021/jz2012275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Li, Wenbin, Hongyou Fan, and Ju Li. "Deviatoric Stress-Driven Fusion of Nanoparticle Superlattices." Nano Letters 14, no. 9 (August 7, 2014): 4951–58. http://dx.doi.org/10.1021/nl5011977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

wu, J., G. Liu, E. Auyeung, J. Cutler, R. Macfarlane, M. Jones, K. Zhang, K. Osberg, C. Mirkin, and V. Dravid. "Electron tomography of DNA-linked nanoparticle superlattices." Microscopy and Microanalysis 18, S2 (July 2012): 1646–47. http://dx.doi.org/10.1017/s1431927612010082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Travesset, A. "Topological structure prediction in binary nanoparticle superlattices." Soft Matter 13, no. 1 (2017): 147–57. http://dx.doi.org/10.1039/c6sm00713a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kurelchuk, U. N., P. V. Borisyuk, and O. S. Vasilyev. "Electron properties of 13-atom nanoparticle superlattices." Materials Letters 262 (March 2020): 127100. http://dx.doi.org/10.1016/j.matlet.2019.127100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zornberg, Leonardo Z., Paul A. Gabrys, and Robert J. Macfarlane. "Optical Processing of DNA-Programmed Nanoparticle Superlattices." Nano Letters 19, no. 11 (October 11, 2019): 8074–81. http://dx.doi.org/10.1021/acs.nanolett.9b03258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Travesset, Alex. "Binary nanoparticle superlattices of soft-particle systems." Proceedings of the National Academy of Sciences 112, no. 31 (July 20, 2015): 9563–67. http://dx.doi.org/10.1073/pnas.1504677112.

Повний текст джерела
Анотація:
The solid-phase diagram of binary systems consisting of particles of diameter σA=σ and σB=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. Particular emphasis is given to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Senesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, Matthew R. Jones, Evelyn Auyeung, Byeongdu Lee, and Chad A. Mirkin. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices." Angewandte Chemie 125, no. 26 (May 16, 2013): 6756–60. http://dx.doi.org/10.1002/ange.201301936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Si, Kae Jye, Yi Chen, Qianqian Shi, and Wenlong Cheng. "Nanoparticle Superlattices: The Roles of Soft Ligands." Advanced Science 5, no. 1 (September 6, 2017): 1700179. http://dx.doi.org/10.1002/advs.201700179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Santiago, P., H. E. Troiani, C. Gutierrez-Wing, J. Ascencio, and M. J. Yacaman. "Structure and Properties of Au Nanoparticle Superlattices." physica status solidi (b) 230, no. 2 (April 2002): 363–70. http://dx.doi.org/10.1002/1521-3951(200204)230:2<363::aid-pssb363>3.0.co;2-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Senesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, Matthew R. Jones, Evelyn Auyeung, Byeongdu Lee, and Chad A. Mirkin. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices." Angewandte Chemie International Edition 52, no. 26 (May 16, 2013): 6624–28. http://dx.doi.org/10.1002/anie.201301936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Patra, Tarak K., Henry Chan, Paul Podsiadlo, Elena V. Shevchenko, Subramanian K. R. S. Sankaranarayanan, and Badri Narayanan. "Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices." Nanoscale 11, no. 22 (2019): 10655–66. http://dx.doi.org/10.1039/c8nr09699f.

Повний текст джерела
Анотація:
Coarse-grained molecular dynamics simulations, and small angle X-ray scattering experiments illustrate that coverage density of capping ligands provides a route to engineer nanoparticle superlattices.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Mayence, Arnaud, Dong Wang, German Salazar-Alvarez, Peter Oleynikov, and Lennart Bergström. "Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging." Nanoscale 6, no. 22 (2014): 13803–8. http://dx.doi.org/10.1039/c4nr04156a.

Повний текст джерела
Анотація:
Planar defects in Pd nanoparticle superlattices were revealed by a combination of real and reciprocal space transmission electron microscopy techniques. 3D electron diffraction tomography was extended to characterize mesoscale imperfections.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Li, Meng, Yuanzhi Chen, Na Ji, Deqian Zeng, and Dong-Liang Peng. "Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices." Materials Chemistry and Physics 147, no. 3 (October 2014): 604–10. http://dx.doi.org/10.1016/j.matchemphys.2014.05.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ji, Na, Yuanzhi Chen, Pingyun Gong, Keyan Cao, and Dong-Liang Peng. "Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices." Colloids and Surfaces A: Physicochemical and Engineering Aspects 480 (September 2015): 11–18. http://dx.doi.org/10.1016/j.colsurfa.2015.03.058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії