Статті в журналах з теми "NanoFramework"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: NanoFramework.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-38 статей у журналах для дослідження на тему "NanoFramework".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Li, Zehui, Yuheng Jiang, Chenming Liu, Zhuoya Wang, Zhiqin Cao, Yi Yuan, Mingjie Li, et al. "Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection." Environmental Science: Nano 5, no. 8 (2018): 1834–43. http://dx.doi.org/10.1039/c8en00498f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gao, Lin, Hao Hu, Guojian Li, Qiancheng Zhu, and Ying Yu. "Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials." Nanoscale 6, no. 12 (2014): 6463–67. http://dx.doi.org/10.1039/c4nr00387j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Gwang-Hee, Seun Lee, Chan Woo Lee, Changhoon Choi, and Dong-Wan Kim. "Stable high-areal-capacity nanoarchitectured germanium anodes on three-dimensional current collectors for Li ion microbatteries." Journal of Materials Chemistry A 4, no. 3 (2016): 1060–67. http://dx.doi.org/10.1039/c5ta08806b.

Повний текст джерела
Анотація:
Ge nanoarrays anchored on 3D Cu nanoframework current collectors have demonstrated high areal capacity and stable cycling performance. The newly developed electrode design enabled high mass loading of active Ge and efficient conductive pathways for high-energy Li-ion microbatteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ho, My Duyen, Yiyi Liu, Dashen Dong, Yunmeng Zhao, and Wenlong Cheng. "Fractal Gold Nanoframework for Highly Stretchable Transparent Strain-Insensitive Conductors." Nano Letters 18, no. 6 (May 16, 2018): 3593–99. http://dx.doi.org/10.1021/acs.nanolett.8b00694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Jun, Samuel Chan, Richard R. Carlson, Yi Luo, Guanglu Ge, Ryan S. Ries, James R. Heath, and Hsian-Rong Tseng. "Electrochemically Fabricated Polyaniline Nanoframework Electrode Junctions that Function as Resistive Sensors." Nano Letters 4, no. 9 (September 2004): 1693–97. http://dx.doi.org/10.1021/nl049114p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karunakaran, Chockalingam, and Pazhamalai Vinayagamoorthy. "Tri-functional Fe2O3-encased Ag-doped ZnO nanoframework: magnetically retrievable antimicrobial photocatalyst." Materials Research Express 3, no. 11 (November 17, 2016): 115501. http://dx.doi.org/10.1088/2053-1591/3/11/115501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Mingmei, Ying Wang, Denghui Pan, Yuan Li, Zaoxue Yan, and Jimin Xie. "Nitrogen-Doped 3D Graphene/MWNTs Nanoframework-Embedded Co3O4 for High Electrochemical Performance Supercapacitors." ACS Sustainable Chemistry & Engineering 5, no. 6 (May 19, 2017): 5099–107. http://dx.doi.org/10.1021/acssuschemeng.7b00453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duraipandy, Natarajan, Govindarajan Dharunya, Rachita Lakra, Purna Sai Korapatti, and Manikantan Syamala Kiran. "Fabrication of plumbagin on silver nanoframework for tunable redox modulation: Implications for therapeutic angiogenesis." Journal of Cellular Physiology 234, no. 8 (December 17, 2018): 13110–27. http://dx.doi.org/10.1002/jcp.27981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, L., Y. F. Yuan, Y. Q. Zheng, X. T. Zhang, S. M. Yin, and S. Y. Guo. "Capsule-like Co3O4 nanocage@Co3O4 nanoframework/TiO2 nodes as anode material for lithium-ion batteries." Materials Letters 253 (October 2019): 5–8. http://dx.doi.org/10.1016/j.matlet.2019.06.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Choudhary, Priyadarshani, Thanusu Parandhaman, Baskaran Ramalingam, Natarajan Duraipandy, Manikantan Syamala Kiran, and Sujoy K. Das. "Fabrication of Nontoxic Reduced Graphene Oxide Protein Nanoframework as Sustained Antimicrobial Coating for Biomedical Application." ACS Applied Materials & Interfaces 9, no. 44 (October 30, 2017): 38255–69. http://dx.doi.org/10.1021/acsami.7b11203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sinha, Ankita, Yujin Huang, Dhanjai, Kaixin Ma, and Huimin Zhao. "Electrochemical Oxidation of Tannic Acid at ZIF-8 Induced Nitrogen Doped Porous Carbon Nanoframework Modified Electrode." Journal of The Electrochemical Society 165, no. 14 (2018): H1004—H1011. http://dx.doi.org/10.1149/2.1321814jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Huang, Fei, Lei Wang, Decai Qin, Zhibin Xu, Meiqi Jin, Yu Chen, Xianxiang Zeng, and Zhihui Dai. "Constructing Heterostructured Bimetallic Selenides on an N-Doped Carbon Nanoframework as Anodes for Ultrastable Na-Ion Batteries." ACS Applied Materials & Interfaces 14, no. 1 (January 3, 2022): 1222–32. http://dx.doi.org/10.1021/acsami.1c21934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Men, Shuang, Jiajv Lin, Yuan Zhou, and Xiongwu Kang. "N-doped porous carbon wrapped FeSe2 nanoframework prepared by spray drying: A potential large-scale production technique for high-performance anode materials of sodium ion batteries." Journal of Power Sources 485 (February 2021): 229310. http://dx.doi.org/10.1016/j.jpowsour.2020.229310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Cheng, Danling, Jiali Gong, Peng Wang, Jingyi Zhu, Ningyue Yu, Jinhua Zhao, Qin Zhang, and Jingchao Li. "131I-Labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer." Journal of Materials Chemistry B 9, no. 45 (2021): 9316–23. http://dx.doi.org/10.1039/d1tb02115j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zhang, Hanjie, Kun Ye, Xiaoting Huang, Xia Lin, Li Ma, and Tianfeng Chen. "Designing lanthanide coordination nanoframeworks as X-ray responsive radiosensitizers for efficient cancer therapy." Inorganic Chemistry Frontiers 8, no. 14 (2021): 3433–39. http://dx.doi.org/10.1039/d1qi00442e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Lin, Zhiyuan, Wei Su, Song Zhang, Mingtao Zhang, Kexun Li, and Jia Liu. "Co2P embedded in nitrogen-doped carbon nanoframework derived from Co-based metal-organic framework as efficient oxygen reduction reaction electrocatalyst for enhanced performance of activated carbon air-cathode microbial fuel cell." Journal of Electroanalytical Chemistry 895 (August 2021): 115355. http://dx.doi.org/10.1016/j.jelechem.2021.115355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Weck, Philippe F., Eunja Kim, Naduvalath Balakrishnan, Hansong Cheng, and Boris I. Yakobson. "Designing carbon nanoframeworks tailored for hydrogen storage." Chemical Physics Letters 439, no. 4-6 (May 2007): 354–59. http://dx.doi.org/10.1016/j.cplett.2007.03.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Padervand, Mohsen, Fatemeh Mesri Fasandouz, and Abolghasem Beheshti. "[Cu-Ag2]O–C3N4 nanoframeworks for efficient photodegradation of wastewaters." Progress in Reaction Kinetics and Mechanism 44, no. 2 (May 2019): 175–86. http://dx.doi.org/10.1177/1468678319825723.

Повний текст джерела
Анотація:
CuO- and Ag2O-decorated g-C3N4 photocatalysts were prepared by appropriate chemical modification of carbon nitride nanosheets produced from programmed pyrolysis of urea. After comprehensive characterization by powder X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform–infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller analysis methods, their photocatalytic performances were examined for the removal of Acid Blue 92 azo dye, as a typical wastewater component from the textile industry. The X-ray diffraction patterns confirmed the presence of CuO and Ag2O nanoparticles on the surface of the sheets. In addition, diffuse reflectance spectra indicated a considerable reduction of the band gap of pure C3N4 by modification. The photoreaction was discussed mechanistically and the best operational parameters were found to achieve the highest efficiency under visible light.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Li, Zhongchun, Wenxian Wei, Ying Wang, Aijun Gu, Liangbiao Wang, and Quanfa Zhou. "Trimanganese tetraoxide nanoframeworks: Morphology–controlled synthesis and application in asymmetric supercapacitors." Journal of Alloys and Compounds 793 (July 2019): 446–53. http://dx.doi.org/10.1016/j.jallcom.2019.04.155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhao, Panchao, Bosheng Zhang, Xiaodong Hao, Wei Yi, Jialin Chen, and Qigao Cao. "Rational Design and Synthesis of Adjustable Pt and Pt-Based 3D-Nanoframeworks." ACS Applied Energy Materials 5, no. 1 (January 12, 2022): 942–50. http://dx.doi.org/10.1021/acsaem.1c03337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

He, Ting, Bing Ni, Yangchen Ou, Haifeng Lin, Simin Zhang, Chaozhong Li, Jing Zhuang, Wenping Hu, and Xun Wang. "Nanosheet-Assembled Hierarchical Carbon Nanoframeworks Bearing a Multiactive Center for Oxygen Reduction Reaction." Small Methods 2, no. 6 (April 26, 2018): 1800068. http://dx.doi.org/10.1002/smtd.201800068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Liang, Tingxizi, Benhua Zhang, Zejing Xing, Yuxiang Dong, Hongmei Xu, Xueqin Chen, Liping Jiang, Jun‐Jie Zhu, and Qianhao Min. "Adapting and Remolding: Orchestrating Tumor Microenvironment Normalization with Photodynamic Therapy by Size Transformable Nanoframeworks." Angewandte Chemie International Edition 60, no. 20 (April 8, 2021): 11464–73. http://dx.doi.org/10.1002/anie.202102180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Liang, Tingxizi, Benhua Zhang, Zejing Xing, Yuxiang Dong, Hongmei Xu, Xueqin Chen, Liping Jiang, Jun‐Jie Zhu, and Qianhao Min. "Adapting and Remolding: Orchestrating Tumor Microenvironment Normalization with Photodynamic Therapy by Size Transformable Nanoframeworks." Angewandte Chemie 133, no. 20 (April 8, 2021): 11565–74. http://dx.doi.org/10.1002/ange.202102180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kong, Weiheng, Linlin Wang, Yan Zhao, Hong Chen, Yunming Liu, Xiaoyan Han, Ying Yang, Juan Wang, Changjun You, and Yanlan Liu. "Sequential module coordination-driven programmable function switch of metal-molecule nanoframeworks for cancer theranostics." Nano Today 38 (June 2021): 101126. http://dx.doi.org/10.1016/j.nantod.2021.101126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Jayashree, M., M. Parthibavarman, R. BoopathiRaja, S. Prabhu, and R. Ramesh. "Ultrafine MnO2/graphene based hybrid nanoframeworks as high-performance flexible electrode for energy storage applications." Journal of Materials Science: Materials in Electronics 31, no. 9 (March 25, 2020): 6910–18. http://dx.doi.org/10.1007/s10854-020-03254-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Liu, Yifei, Chang Sun, Lu Zhang, Pan Zheng, Qing Meng, Chaohuang Zhang, Xinjie Ye, Jian Jiang, and Chang Ming Li. "High S Filling and Binder-Free Cathodes Enabled by Thick Arrayed Nanoframeworks and Subtle Interfacial Engineering." ACS Applied Energy Materials 5, no. 1 (January 7, 2022): 1313–21. http://dx.doi.org/10.1021/acsaem.1c03785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Jiang, Tiancai, Fanxing Bu, Xiaoxiang Feng, Imran Shakir, Guolin Hao, and Yuxi Xu. "Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery." ACS Nano 11, no. 5 (May 2, 2017): 5140–47. http://dx.doi.org/10.1021/acsnano.7b02198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Padervand, Mohsen, Farnaz Asgarpour, Ali Akbari, Bagher Eftekhari Sis, and Gerhard Lammel. "Hexagonal Core–Shell SiO2[–MOYI]Cl–]Ag Nanoframeworks for Efficient Photodegradation of the Environmental Pollutants and Pathogenic Bacteria." Journal of Inorganic and Organometallic Polymers and Materials 29, no. 4 (February 14, 2019): 1314–23. http://dx.doi.org/10.1007/s10904-019-01095-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Jinping, Jingyu Sun, Yuhao Wang, Tsengming Chou, Qiang Zhang, Beilu Zhang, Lei Ren, and Hongjun Wang. "Gold Nanoframeworks with Mesopores for Raman–Photoacoustic Imaging and Photo‐Chemo Tumor Therapy in the Second Near‐Infrared Biowindow." Advanced Functional Materials 30, no. 9 (January 8, 2020): 1908825. http://dx.doi.org/10.1002/adfm.201908825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zhang, Xinlin, Liwu Huang, Pan Zeng, Lin Wu, Ruixue Zhang, and Yungui Chen. "Highly Porous Si Nanoframeworks Stabilized in TiO 2 Shells and Enlaced by Graphene Nanoribbons for Superior Lithium‐Ion Storage." ChemElectroChem 5, no. 18 (September 12, 2018): 2584–92. http://dx.doi.org/10.1002/celc.201800635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yang, Qiao, Xuhao Wu, Xuankai Huang, Shuang Liao, Kaijie Liang, Xueang Yu, Kuan Li, Chunyi Zhi, Haiyan Zhang, and Na Li. "Cl–/SO32–-Codoped Poly(3,4-ethylenedioxythiophene) That Interpenetrates and Encapsulates Porous Fe2O3 To Form Composite Nanoframeworks for Stable Lithium-Ion Batteries." ACS Applied Materials & Interfaces 11, no. 34 (August 2019): 30801–9. http://dx.doi.org/10.1021/acsami.9b08111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Tseng, Hsian-Rong, Jun Wang, and Maksudul M. Alam. "Electrochemically Fabricated Conducting Polymer Nanoframework Electrode Junctions That Function as Resistive Sensors." MRS Proceedings 828 (2004). http://dx.doi.org/10.1557/proc-828-a2.10.

Повний текст джерела
Анотація:
ABSTRACTWe have demonstrated a template-free, site-specific, and scalable electrochemical method for the fabrication of individually addressable conducting polymer nanoframework electrode junctions in a parallel-oriented array. These conducting polymer nanoframeworks, which are composed of numerous intercrossing conducting polymer nanowires that have uniform diameters ranging from 40 to 150 nm, can be used for the chemical sensing of HCl and NH3 gases and organic vapors and for sensing pH values of aqueous solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Li, Feng, Wenting Yu, Jiaojiao Zhang, Yuhang Dong, Xiaohui Ding, Xinhua Ruan, Zi Gu, and Dayong Yang. "Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA delivery." Nature Communications 12, no. 1 (February 18, 2021). http://dx.doi.org/10.1038/s41467-021-21442-7.

Повний текст джерела
Анотація:
AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Guo, Wenbo, Lidong Wu, Kai Fan, Dongxia Nie, Weijing He, Junhua Yang, Zhihui Zhao, and Zheng Han. "Reduced Graphene Oxide-Gold Nanoparticle Nanoframework as a Highly Selective Separation Material for Aflatoxins." Scientific Reports 7, no. 1 (November 3, 2017). http://dx.doi.org/10.1038/s41598-017-15210-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Qi, Shengliang, Xin Wang, Jia Kang, Yangfei Hu, Nan Xu, Mengna Zhang, Hui Peng, and Guofu Ma. "Self‐generated template assisted construction of nitrogen self‐doped porous carbon nanoframework with rich planar holes for high energy density supercapacitor." Batteries & Supercaps, April 29, 2022. http://dx.doi.org/10.1002/batt.202200087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Liu, Yunxi, Yue Chen, Weidong Fei, Caihong Zheng, Yongquan Zheng, Miao Tang, Ying Qian, et al. "Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic." Frontiers in Bioengineering and Biotechnology 9 (September 7, 2021). http://dx.doi.org/10.3389/fbioe.2021.733792.

Повний текст джерела
Анотація:
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

shen, Bo, Qian Wu, Yunpeng Fan, Haiping Wu, Xinmin Li, Xiaofen Zhao, Yuwei Wang, Shijia Ding, and Juan Zhang. "TiO2@Ag nanozyme enhanced electrochemiluminescent biosensor coupled with DNA nanoframework-carried emitters and enzyme-assisted target recycling amplification for ultrasensitive detection of microRNA." Chemical Engineering Journal, May 2022, 136820. http://dx.doi.org/10.1016/j.cej.2022.136820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Raju, Prabhu, and Suganthy Natarajan. "Investigation of Pesticidal and Anti-biofilm Potential of Calotropis gigantea Latex Encapsulated Zeolitic Imidazole Nanoframeworks." Journal of Inorganic and Organometallic Polymers and Materials, March 28, 2022. http://dx.doi.org/10.1007/s10904-022-02298-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії