Добірка наукової літератури з теми "NANOFILLER MATERIAL"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "NANOFILLER MATERIAL".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "NANOFILLER MATERIAL"
Budiyantoro, Cahyo. "The Influence of Nano Filler on Thermal and Mechanical Properties of Polypropylene." Materials Science Forum 929 (August 2018): 78–85. http://dx.doi.org/10.4028/www.scientific.net/msf.929.78.
Повний текст джерелаIbrahim, Mohamed E., M. Osama Abed el-Raouf, and Nourhan A. Mohamed. "Towards a Generalized Electric Breakdown Mechanism of Insulating Nanofluids." Nano Hybrids and Composites 36 (June 20, 2022): 81–88. http://dx.doi.org/10.4028/p-jj4qou.
Повний текст джерелаFang, Xin, Jinjin Rong, Yilin Deng, and Moon-Hwan Jee. "Research on Processing Technology Product Design and the Application of Nano-Wood-Plastic Composite Materials." Journal of Nanoscience and Nanotechnology 20, no. 12 (December 1, 2020): 7787–92. http://dx.doi.org/10.1166/jnn.2020.18881.
Повний текст джерелаKrishnan, Arun, and L. Roy Xu. "A Simple Effective Flaw Model on Analyzing the Nanofiller Agglomeration Effect of Nanocomposite Materials." Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/483093.
Повний текст джерелаIbrahim, Mohamed E., Elsayed Tag Eldin, Safaa F. Elzoghby, Mohamed A. Izzularab, and Amr M. Abd-Elhady. "The Role of the Accumulated Surface Charge on Nanoparticles in Improving the Breakdown Strength of Liquid and Solid Insulation." Energies 15, no. 13 (July 2, 2022): 4860. http://dx.doi.org/10.3390/en15134860.
Повний текст джерелаNawawi, Zainuddin, R. F. Kurnia, N. F. A. Isa, Z. Buntat, D. R. Yuniarti, M. I. Jambak, and Muhammad Abu Bakar Sidik. "Electrical Potential Distribution in Polymethyl Methacrylate-Graphene Oxide Nanocomposites." Indonesian Journal of Electrical Engineering and Computer Science 4, no. 2 (November 1, 2016): 256. http://dx.doi.org/10.11591/ijeecs.v4.i2.pp256-262.
Повний текст джерелаAbdul Razak, Nurul Iman, Noor Izyan Syazana Mohd Yusoff, Mohd Hafizi Ahmad, Muzafar Zulkifli, and Mat Uzir Wahit. "Dielectric, Mechanical, and Thermal Properties of Crosslinked Polyethylene Nanocomposite with Hybrid Nanofillers." Polymers 15, no. 7 (March 29, 2023): 1702. http://dx.doi.org/10.3390/polym15071702.
Повний текст джерелаSundarakannan, R., K. Balamurugan, Y. Jyothi, V. Arumugaprabu, Thanikodi Sathish, Z. Mahmoud, El Sayed Yousef, Dadapeer Basheer, and Saboor Shaik. "Importance of Fiber-/Nanofiller-Based Polymer Composites in Mechanical and Erosion Performance: A Review." Journal of Nanomaterials 2023 (February 8, 2023): 1–16. http://dx.doi.org/10.1155/2023/3528977.
Повний текст джерелаTonprasong, Watcharapong, Masanao Inokoshi, Muneaki Tamura, Motohiro Uo, Takahiro Wada, Rena Takahashi, Keita Hatano, Makoto Shimizubata, and Shunsuke Minakuchi. "Tissue Conditioner Incorporating a Nano-Sized Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler." Materials 14, no. 21 (November 4, 2021): 6648. http://dx.doi.org/10.3390/ma14216648.
Повний текст джерелаLanna, Aunnuda, Montri Suklueng, Chainuson Kasagepongsan, and Sunisa Suchat. "Performance of Novel Engineered Materials from Epoxy Resin with Modified Epoxidized Natural Rubber and Nanocellulose or Nanosilica." Advances in Polymer Technology 2020 (January 10, 2020): 1–11. http://dx.doi.org/10.1155/2020/2123836.
Повний текст джерелаДисертації з теми "NANOFILLER MATERIAL"
Adegbotolu, Urenna V. "Demulsification and recycling of spent oil based drilling fluid as nanofiller for polyamide 6 nanocomposites." Thesis, Robert Gordon University, 2016. http://hdl.handle.net/10059/3136.
Повний текст джерелаVertuccio, Luigi. "Nanofilled epoxy adhesive for structural aereonautic materials." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2588.
Повний текст джерелаThe focus of this study is to design new nano-modified epoxy adhesives using carbon nanofillers such as carbon nanotubes, carbon nanofibers and exfoliated graphite. Kinetic analysis, transport properties, dynamic mechanical properties and electrical properties have shown to be a powerful means for understanding molecular structure and phase composition of the formulated nanocomposites. Kinetic analysis, performed by using an advanced iso-conversional method and the Kamal’s model-diffusion controlled respectively, has shown which, in epoxy resin, based on the tetrafunctional epoxy precursor N,N′-tetraglycidyl methylene dianiline-(TGMDA) hardened with 4,4-diaminodiphenyl sulfone (DDS), the introduction of the diluent decreases particularly the activation energy of secondary amine-epoxy reaction. The inclusion in the resin of one-dimensional fillers does not lead to big differences in the curing kinetics behaviour with respect to the raw epoxy. An increase in the activation energy is found in the case of highly exfoliated graphite. It is likely due to a reduction of free molecular segments of the epoxy network entrapped inside self-assembly structures. Transport properties have shown that, using a non-stoichiometric amount of hardener, the chemical structure of epoxy mixture exhibits unique properties concerning the water sorption for which the Equilibrium Concentration of Water is reduced up to a maximum of 30%. Dynamic mechanical analysis have shown that the nanoparticles are responsible of a more mobile phase, in the structure of the resin, determining an additional glass transition at lower temperature with respect to the main glass transition temperature. The fraction of the more mobile phase is strictly related to the amount and nature of the nanofiller and to the amount of the hardener, in fact, using a non-stoichiometric amount of hardener, also the electrical properties are improved further. The adhesive formulations based on epoxy/nanostructured carbon forms are used to obtain both adhesive and adherents to order to evaluate the adhesion properties with different joint configurations (tensile butt joint and single lap joint). The inclusion of carbon nanofillers inside the epoxy adhesive caused a significant improvement in the bond strength of the joints, changing the failure mode of joints in single lap joint shear tests. Finally, the conductive adhesive carbon nanotubes based, have been modified, by introduction of an elastomer, to order to obtain high performance in the configuration lap shear strength (LSS) with adherents in carbon fiber reinforced plastics (CFRP) used in aeronautic field. A correct combination of elastomer and carbon nanotubes, has allowed obtaining a conductive adhesive with high performance. [edited by author]
XV n.s. (XXIX)
Dabrowska, Izabela. "Polyolefin nanocomposite with different types of nanofillers." Doctoral thesis, Università degli studi di Trento, 2013. https://hdl.handle.net/11572/368488.
Повний текст джерелаDabrowska, Izabela. "Polyolefin nanocomposite with different types of nanofillers." Doctoral thesis, University of Trento, 2013. http://eprints-phd.biblio.unitn.it/1103/1/Izabela_Dabrowska_PhD_Thesis.pdf.
Повний текст джерелаMcGlasson, Alex M. "Quantification of the Dispersion of Reinforcing Fillers in Polymer Nanocomposite Materials." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1554475356053017.
Повний текст джерелаAl, Habis Nuha. "Engineering and Modeling Carbon Nanofiller-Based Scaffolds for Tissue Regeneration." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1500561556157495.
Повний текст джерелаVilà, Ramírez Narciso. "Effects of melt blended poss nanofillers on pom and ABS thermal stability." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/145685.
Повний текст джерелаLos avances producidos en años recientes en el campo de la nanotecnología y sus aplicaciones en los materiales están aportando grandes mejoras en el rendimiento de los mismos en áreas como la resistencia mecánica, estabilidad térmica, propiedades ópticas y eléctricas, entre otras. Por otro lado, el mundo de la ingeniería y el diseño de componentes plásticos está llevando los materiales cada vez más a su límite, con el fin de poder ofrecer el máximo rendimiento al mínimo coste. Esta realidad implica la necesidad creciente de customizar estructuras poliméricas con propiedades mejoradas en áreas específicas para cada aplicación. A pesar de los desarrollos que se han estado produciendo últimamente en nanocompuestos termoplásticos, el conocimiento en este campo es aún limitado, y requiere de más iniciativas de investigación y desarrollo sobre el amplio campo de posibilidades que nos ofrecen los nanocompuestos. El objetivo de esta tesis es contribuir en el conocimiento de los nanocompuestos a través del estudio de los efectos de varias nanocargas del tipo Polyhedral Oligomeric Silsesquioxanes (POSS) en el comportamiento de la resistencia térmica del copolímero semicristalino polióxido de metileno (POM) y del terpolímero amorfo acrilonitrilo‐butadieno‐estireno (ABS), los cuales son dos plásticos técnicos susceptibles a la termoxidación. Diferentes nanocompuestos se han elaborado con el fin de estudiar su morfología, miscibilidad, estructura, propiedades térmicas y apariencia, así como los beneficios y contrapartidas que resultan de ellos. Los nano‐compuestos han sido elaborados mediante el método de mezcla en estado fundido (melt‐blending), utilizando cuatro nano‐cargas distintas para el POM, siendo Glicidil, Glicidil‐Isobutil, Aminopropil‐isobutil y Poli(etilen‐glicol), y tres nano‐cargas para el ABS, siendo Amino‐Propil Isobutil, Glicidil y Trisilanol La compatibilidad teórica de las nano‐cargas se ha calculado mediante el método de solubilidad de “Hoy”, y se ha corroborado con microscopia electrónica de barrido (SEM) y calorimetría diferencial de barrido (DSC). Posteriormente, cada material base y sus distintas variantes de nano‐compuestos se han sometido a diferentes condiciones de termo‐oxidación en términos de temperatura y tiempo de exposición. El comportamiento a la degradación de cada muestra se ha cuantificado mediante los métodos de espectroscopia de infrarrojos por transformada de Fourier (FTIR), análisis de termogravimetría (TGA) incluyendo cinética de degradación, y finalmente mediante espectrofotometría (Cielab) para definir el progreso de la apariencia de la muestra en términos de amarilleamiento. Los resultados derivados de la inclusión de los diferentes POSS utilizados en la matriz de POM han mejorado sustancialmente la estabilidad térmica del mismo, y dicha mejora es proporcional a la compatibilidad de solubilidades entre el POM y los POSS utilizados. El mejor comportamiento se produce con la incorporación de la nanocarga aminopropilisobutil, con una temperatura de máxima degradación (TMAX) incrementada en 22 ºC sobre la TMAX del POM original tomado como referencia. Esta mejora se refleja también con una reducción muy notable en la formación grupos carbonilo y en el amarilleamiento sufrido en la superficie de la muestra, siendo un 2% y 8% respectivamente comparados con los resultados obtenidos con la muestra equivalente del material POM original. En referencia a los nanocompuestos basados en ABS‐g‐Ma, a pesar de la adecuada solubilidad teórica entre la matriz y las diferentes nano‐cargas, así como la buena miscibilidad obtenida en la elaboración de las muestras y evidenciada en el análisis morfológico SEM, no se han podido obtener mejoras en términos de estabilidad térmica. Concretamente, la adición de GPOSS y TPOSS no han aportado beneficios relevantes en las propiedades del nanocompuesto final, y la nanocarga APOSS ha incluso afectado negativamente a la matriz con una ligera caída de la resistencia térmica.
Els avenços produïts en els últims anys tant en el camp de la nanotecnología com en les seves aplicacions en els materials, està contribuint en la millora del rendiment dels mateixos en àeras com la resistència mecànica, l’estabilitat tèrmica, i les propietats òptiques i elèctriques entre d’altres. Per altra banda, el món de l’enginyería i el disseny de components plàstics està portant els materials cada vegada més al seu límit amb la finalitat de poder oferir el màxim rendiment al mínim cost, i això comporta una necessitat creixent de customitzar les estructura polimèriques amb propietats especificament millorades en àreas molt concretes en funció de l’aplicació requerida. A pesar del desenvolupament que s’ha estat produint últimament en l’àrea de nanocompostos plàstics, el coneixement en aquest camp és encara limitat, i requereix de més iniciatives d’investigació per cobrir el potencial que ofereix aquesta classe de materials, així com conèixer també les seves limitacions. L’objectiu d’aquesta tesi es el de contribuïr en l’enteniment dels nanocompostos plàstics a través de l’estudi dels efectes de vàries nanocàrregues del tipus Polyhedral Oligomeric Silsesquioxanes (POSS) en el comportament de la resistència tèrmica del poli(òxid de metilè) (POM) com a material semicristalí, i l’acrilonitril‐butadiè‐estirè (ABS) com a material amorf. Val a dir que la selecció d’aquests dos polímers tècnics ha estat en part motivada per la seva susceptibilitat inherent a la termodegradació. Diferents nanocompostos basats amb aquests materials s’han elaborat amb la finalitat d’estudiar la seva morfología, miscibilitat, estructura, propietats tèrmiques i aparença, així com els beneficis i contrapartides que resulten d’ells. La preparació dels nanocompostos ha sigut mitjançant el mètode de barreja en estat fos (melt‐blending), util.litzant quatre nano‐càrregues diferentes per el POM, siguent glicidil, glicidil‐Isobutil, aminopropil‐isobutil y poli(etilenè‐glicol), i tres nano‐càrregues per el ABS, siguent amino‐propil isobutil, glicidil i trisilanol. La compatibilitat teòrica de les nano‐càrregues s’ha calculat mitjançant el mètode de solubitat de “Hoy”, i s’ha corroborat amb microscopia electrònica d’escombrat (SEM) i calorimetría diferencial d’escombrat (DSC). Posteriorment s’ha sotmès cada material base i les seves diferents variants de nanocompostos a diferents condicions de termo‐oxidació en termes de temperatura i temps d’exposició. El comportament a la degradació de cada mostra s’ha quantificat mitjançant els mètodes d’espectroscopía d’infraroigs per transformada de Fourier (FTIR), anàlisis de termogravimetría (TGA) incloent cinemàtica de degradació, i finalment mitjançant espectrofotometría (Cielab) per a definir el progrés de l’aparença de la mostra en termes d’engroguiment. Els resultats han mostrat, per una banda, que la inclusió dels diferents POSS util.litzats en la matriu de POM ha millorat substancialment l’estabilitat tèrmica del mateix, i aquesta millora és proporcional a la compatibilitat entre les solubitats del POM i del POSS. El millor comportament s’ha produït amb l’adició de la nano‐càrrega d’aminopropilisobutil, amb una temperatura de màxima degradació (TMAX) millorada en 22ºC en relació a la obtinguida amb la matriu de POM. Aquesta millora també es reflexa amb una reducció molt notable en la formació de grups carbonil i en l’engroguiment sofert en la superfície de la mostra, siguent un 2% i 8% respectivament comparats amb els resultats obtinguts amb la mostra equivalent del material POM original. En contrast, els nanocompostos basats en ABS‐g‐Ma no han ofert millores en termes d’estabilitat tèrmica, a pesar d’una adequada solubitat teòrica entre la matriu i les diferents nano‐càrregues util.litzades, així com la bona miscibilitat obtinguda en l’elaboració de les mostres i posteriorment evidenciada en l’anàlisi morfològic SEM. Concretament l’adició de GPOSS i de TPOSS no han aportat beneficis en les propietats del nanocompostos final, i la nano‐càrrega APOSS ha afectat negativament a la matriu amb una lleuguera caiguda de la resistència tèrmica
DE, BIASI MATTEO. "Study of applied nanostructured and conventional dental materials." Doctoral thesis, Università degli Studi di Trieste, 2016. http://hdl.handle.net/11368/2908084.
Повний текст джерелаRudolf, Christopher Charles. "Microstructure and Mechanical Properties of Nanofiller Reinforced Tantalum-Niobium Carbide Formed by Spark Plasma Sintering." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2596.
Повний текст джерелаFigueiredo, Viviane Maria Gonçalves de. "Efeito de nanofilmes depositados a plasma na resistência de união de um cimento resinoso a uma cerâmica à base de zircônia /." São José dos Campos, 2014. http://hdl.handle.net/11449/127607.
Повний текст джерелаCo-orientador: Marcos Massi
Banca: Renato Sussumu Nishioka
Banca: Argemiro Soares da Silva Sobrinho
Banca: Eron Toshio Colauto Yamamoto
Banca: Rubens Nisei Tango
Resumo: Esta pesquisa objetivou avaliar o efeito de diferentes nanofilmes depositados a plasma na resistência de união entre cimento resinoso e cerâmica à base de zircônia. 120 blocos/espécimes (15,2 x 12,5 x 1,7 mm) e 18 discos (11,0 x 1,4 mm) de zircônia (Y-TZP) (VITA In-Ceram Zirconia, Vita Zahnfabrik, Alemanha) receberam diferentes tratamentos de superfície (n = 20 para os blocos) (n = 3 para discos): zircônia sem tratamento (Zrpolida), jateamento de alumina revestida por sílica (30 μm) (Zrjat#), nanofilme à base de sílica (ZrSiO2), jateamento de alumina (45 μm) + nanofilme à base de sílica (Zrjat+SiO2), e nanofilme à base de fluoreto (ZrF) e jateamento de alumina (45 μm) + nanofilme à base de fluoreto (Zrjat+F). Os nanofilmes foram depositados por meio da técnica a plasma PECVD. As superfícies cerâmicas foram caracterizadas pela morfologia (MEV e MFA), química (XPS) e molhabilidade (ângulo de contacto), realizada nos discos. O agente de união silano foi aplicado em cada superfície e um cilindro de cimento resinoso foi construído sobre os espécimes tratados. Metade dos espécimes de cada grupo (n = 10) foram submetidos a 6.000 ciclos térmicos. A resistência de união foi avaliada pelo teste de cisalhamento e análise fractográfica pelo estereomicroscópico, MEV e EDS. Para análise estatística utilizou-se ANOVA 1-Fator e o teste de Tukey, para presença e ausência de envelhecimento (p = 0,05). A zircônia apresentou-se mais hidrofílica após a deposição dos nanofilmes. Ligações químicas entre Si-O foram encontradas em ZrSiO2; ZrF promove um processo de fluoração na superfície da cerâmica Y-TZP, convertendo-a em oxifluoreto de zircônio. Os valores de resistência de união iniciais obtidos pelos tratamentos de superfície a plasma não superaram os valores de união da silicatização. Após o envelhecimento, todas as amostras do grupo ZrSiO2(TC) sofreram falhas pré-teste. OS valores de resistência de....
Abstract: This study aimed to evaluated the effects of differents plasma nanofilms on the bond strength between resin cement and zirconia ceramic. 120 blocks / specimens (15.2 x 12.5 x 1.7 mm) and 18 discs (11.0 x 1.4 mm) of zirconia (Y-TZP) (VITA In-Ceram Zirconia, Vita Zahnfabrik, Germany) received differents treatments surface (n = 20 for the blocks) (n = 3 for discs): untreated zirconia (Zrpolida), silica-coated (30 μm) (Zrjat#), silica nanofilm (ZrSiO2), sandblasted by air-borne particle abrasion with aluminum oxide particles (45 μm) + silica nanofilm (Zrjat+SiO2) and fluoride nanofilm (ZrF) and sandblasted by air-borne particle abrasion with aluminum oxide particles (45 μm) + fluoride nanofilm (Zrjat+F). The nanofilms were deposited by PECVD technique of the plasma. The ceramic surfaces were characterized by morphology (SEM and AFM), chemical (XPS) and wettability (Contact angle), that was performed on discs. The silane agent was applied to each surface treatment and a cylinder of resin cement was built on the specimens. Half of the samples of each group (n = 10) were subjected to 6.000 thermalcycles. The bond strength was evaluated by shear test and fractographic analysis by stereoscopic, SEM and EDS. Statistical analysis was performed using one-way ANOVA and Tukey's test for the presence and absence non-aged (p = 0.05). Zirconia presented more hydrophilic after nanofilms deposition. Chemical bonds between Si-O were found in ZrSiO2; ZrF promotes a process of fluorination on the Y-TZP surface, promoting the conversion of zirconia in zirconium oxyfluoride. The initial values of bond strength obtained by plasma treatment did not exceed the bond values of the silica-coated. After aging, all samples of the group ZrSiO2 (TC) falied. The values of bond strength of ZrF (TC) (3.8 MPa) were lower than Zrjat# (TC) (15.4 MPa) and Zrpolida (TC) (6.3 MPa). The silica nanofilm showing detachment after shearing. Adhesive failures were predominant among the...
Doutor
Книги з теми "NANOFILLER MATERIAL"
Polymer Composites With Carbonaceous Nanofillers Propterties And Applications. Wiley-VCH Verlag GmbH, 2012.
Знайти повний текст джерелаThomas, Sabu, Nandakumar Kalarikkal, Hanna J. Maria, Srinivasarao Yaragalla, and Raghavendra Kumar Mishra. Carbon Based Nanofillers and Their Rubber Nanocomposites: Fundamentals and Applications. Elsevier, 2019.
Знайти повний текст джерелаThomas, Sabu, Nandakumar Kalarikkal, Raghvendra Kumar Mishra, Hanna J. Maria, and Srinivasarao Yaragalla. Carbon-Based Nanofillers and Their Rubber Nanocomposites: Carbon Nano-Objects. Elsevier, 2018.
Знайти повний текст джерелаThomas, Sabu, Nandakumar Kalarikkal, Hanna J. Maria, Srinivasarao Yaragalla, and Raghavendra Kumar Mishra. Carbon Based Nanofillers and Their Rubber Nanocomposites: Synthesis, Characterization and Applications. Elsevier, 2018.
Знайти повний текст джерелаЧастини книг з теми "NANOFILLER MATERIAL"
Chen, D., and L. Zhang. "Harmonic Vibration of Inclined Porous Nanocomposite Beams." In Lecture Notes in Civil Engineering, 497–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_52.
Повний текст джерелаJastrzębska, M., and M. Rutkowska. "Material Model of Polyester Composites with Glass Reinforced Polyester Recyclate and Nanofiller." In Science and Technology of Polymers and Advanced Materials, 35–45. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429425301-3.
Повний текст джерелаMohan, T. P., and K. Kanny. "Green Nanofillers for Polymeric Materials." In Green Nanomaterials, 99–138. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3560-4_5.
Повний текст джерелаMikhail, Sarah S., Shereen S. Azer, and Scott R. Schricker. "Nanofillers in Restorative Dental Materials." In Handbook of Nanomaterials Properties, 1377–442. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31107-9_58.
Повний текст джерелаBoonmahitthisud, Anyaporn, Anyaporn Boonmahitthisud, Saowaroj Chuayjuljit, and Takaomi Kobayashi. "Encapsulation of Inorganic Renewable Nanofiller." In Handbook of Composites from Renewable Materials, 143–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119441632.ch68.
Повний текст джерелаKodal, Mehmet, and Guralp Ozkoc. "Micro and Nanofillers in Rubbers." In Advanced Structured Materials, 303–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20925-3_11.
Повний текст джерелаDasgupta, Debarshi, Alok Sarkar, Dieter Wrobel, and Anubhav Saxena. "Insights on Nanofiller Reinforced Polysiloxane Hybrids." In Novel Nanoscale Hybrid Materials, 179–200. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119156253.ch5.
Повний текст джерелаBurgaz, Engin. "PU Rigid Nanocomposite Foams Containing Cylindrical Nanofillers." In Advanced Structured Materials, 165–232. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19558-8_4.
Повний текст джерелаBurgaz, Engin. "PU Rigid Nanocomposite Foams Containing Spherical Nanofillers." In Advanced Structured Materials, 233–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19558-8_5.
Повний текст джерелаGhose, Subrata, K. A. Watson, D. M. Delozier, D. C. Working, John W. Connell, J. G. Smith, Y. P. Sun, and Y. Lin. "Thermal Conductivity of Polyimide/Carbon Nanofiller Blends." In Advances in Composite Materials and Structures, 749–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.749.
Повний текст джерелаТези доповідей конференцій з теми "NANOFILLER MATERIAL"
Ghazzawi, Sultan M., and Tyler N. Tallman. "On the Development of a Concentric Cylindrical Model for the Deformation-Dependent Electrical Resistivity of Fiber-Reinforced Composites." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-89142.
Повний текст джерелаJain, Rajan, Hashim Hassan, Weinong Chen, Tyler N. Tallman, and Nesredin Kedir. "Electrical Self-Sensing of Pulsed Laser Ablation in Nanofiller-Modified Composites." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67779.
Повний текст джерелаSantoso, Henry, Andrea Cavallini, and Suwarno. "The Effect of Nanofiller And Temperature on Dielectric Properties of Polypropylene-Based Dielectric Material." In 2020 IEEE International Conference on Power and Energy (PECon). IEEE, 2020. http://dx.doi.org/10.1109/pecon48942.2020.9314466.
Повний текст джерелаKurimoto, Muneaki, Takahiro Umemoto, Shigeyoshi Yoshida, Takahiro Mabuchi, and Hirotaka Muto. "Influence of Nanofiller Material on Impulse Breakdown Strength of Epoxy Nanocomposite without Micrometer-size Agglomerates." In 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2020. http://dx.doi.org/10.1109/ceidp49254.2020.9437523.
Повний текст джерелаKamble, Mithil, Aniruddha Lakhnot, Catain Picu, and Nikhil Koratkar. "Hierarchically Organized Nanocomposites for Enhanced Fatigue Life of Rotorcraft Components." In Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14722.
Повний текст джерелаAbdel Hamid, Dalia, Amal Esawi, Inas Sami, and Randa Elsalawy. "Characterization of Nano- and Micro-Filled Resin Composites Used as Dental Restorative Materials." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47053.
Повний текст джерелаYekani Fard, Masoud, Alek Pensky, and Jack Mester. "Nanoscale Interphase Characterization of Agglomerated MWCNT in Composites Connected to Mode I Fracture." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23635.
Повний текст джерелаStelescu, Maria Daniela, Mihai Georgescu, Maria Sonmez, Mihaela Nituica, and Adriana Stefan. "Elastomeric nanomaterials based on natural rubber for the food industry." In The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.iv.23.
Повний текст джерелаMaynard, Cole M., Julio A. Hernandez, Andrew Doak, Benjamin Mardikis, Monica Viz, Brittany Newell, Jose Garcia, and Tyler N. Tallman. "A Computational Study of Strain Sensing via 3D-Printed CNF-Modified PLA Strain Gauges." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2236.
Повний текст джерелаTiano, Thomas, Margaret Roylance, Benjamin Harrison, and Richard Czerw. "Intralaminar Reinforcement for Biomimetic Toughening of Bismaleimide Composites Using Nanostructured Materials." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81689.
Повний текст джерела