Добірка наукової літератури з теми "Nanocrystal Design - Core-shell Heterostructure"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nanocrystal Design - Core-shell Heterostructure".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nanocrystal Design - Core-shell Heterostructure"

1

Nobile, Concetta, and Pantaleo Davide Cozzoli. "Synthetic Approaches to Colloidal Nanocrystal Heterostructures Based on Metal and Metal-Oxide Materials." Nanomaterials 12, no. 10 (May 18, 2022): 1729. http://dx.doi.org/10.3390/nano12101729.

Повний текст джерела
Анотація:
Composite inorganic nanoarchitectures, based on combinations of distinct materials, represent advanced solid-state constructs, where coexistence and synergistic interactions among nonhomologous optical, magnetic, chemical, and catalytic properties lay a basis for the engineering of enhanced or even unconventional functionalities. Such systems thus hold relevance for both theoretical and applied nanotechnology-based research in diverse areas, spanning optics, electronics, energy management, (photo)catalysis, biomedicine, and environmental remediation. Wet-chemical colloidal synthetic techniques have now been refined to the point of allowing the fabrication of solution free-standing and easily processable multicomponent nanocrystals with sophisticated modular heterostructure, built upon a programmed spatial distribution of the crystal phase, composition, and anchored surface moieties. Such last-generation breeds of nanocrystals are thus composed of nanoscale domains of different materials, assembled controllably into core/shell or heteromer-type configurations through bonding epitaxial heterojunctions. This review offers a critical overview of achievements made in the design and synthetic elaboration of colloidal nanocrystal heterostructures based on diverse associations of transition metals (with emphasis on plasmonic metals) and transition-metal oxides. Synthetic strategies, all leveraging on the basic seed-mediated approach, are described and discussed with reference to the most credited mechanisms underpinning regioselective heteroepitaxial deposition. The unique properties and advanced applications allowed by such brand-new nanomaterials are also mentioned.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Paul, Sumana, Sirshendu Ghosh, Manas Saha, and S. K. De. "Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1−xMgxO system." Physical Chemistry Chemical Physics 18, no. 18 (2016): 13092–107. http://dx.doi.org/10.1039/c6cp00375c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Xuejing, Yung-Chen Lin, Chia-Tse Tai, Seok Woo Lee, Tzu-Ming Lu, Sun Hae Ra Shin, Sadhvikas J. Addamane, et al. "Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure." APL Materials 10, no. 11 (November 1, 2022): 111108. http://dx.doi.org/10.1063/5.0119654.

Повний текст джерела
Анотація:
Realizing a tubular conduction channel within a one-dimensional core–shell nanowire (NW) enables better understanding of quantum phenomena and exploration of electronic device applications. Herein, we report the growth of a SiGe(P)/Si core/shell NW heterostructure using a chemical vapor deposition coupled with vapor–liquid–solid growth mechanism. The entire NW heterostructure behaves as a p-type semiconductor, which demonstrates that the high-density carriers are confined within the 4 nm-thick Si shell and form a tubular conduction channel. These findings are confirmed by both calculations and the gate-dependent current–voltage ( I d– V g) characteristics. Atomic resolution microscopic analyses suggest a coherent epitaxial core/shell interface where strain is released by forming dislocations along the axial direction of the NW heterostructure. Additional surface passivation achieved via growing a SiGe(P)/Si/SiGe core/multishell NW heterostructure suggests potential strategies to enhance the tubular carrier density, which could be further modified by improving multishell crystallinity and structural design.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Han, Chuang, Shao-Hai Li, Zi-Rong Tang, and Yi-Jun Xu. "Tunable plasmonic core–shell heterostructure design for broadband light driven catalysis." Chemical Science 9, no. 48 (2018): 8914–22. http://dx.doi.org/10.1039/c8sc04479a.

Повний текст джерела
Анотація:
A tunable core–shell heterostructure design coupling two conceptually different optical absorption models for improved broadband light absorption and hot charge carrier separation toward plasmon-mediated photocatalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ünlü, Hilmi. "A thermoelastic model for strain effects on bandgaps and band offsets in heterostructure core/shell quantum dots." European Physical Journal Applied Physics 86, no. 3 (June 2019): 30401. http://dx.doi.org/10.1051/epjap/2019180350.

Повний текст джерела
Анотація:
A thermoelastic model is proposed to determine elastic strain effects on electronic properties of spherical Type I and Type II heterostructure core/shell quantum dots (QDs) as a function of dimensions of constituent semiconductors at any temperature. Proposed model takes into account the difference between lattice constants, linear expansion coefficients and anisotropy of elastic moduli (Young's modulus and Poisson's ratio) of constituent semiconductors, respectively. In analogous to lattice mismatch, we introduce so called the elastic anisotropy mismatch in heterostructures. Compressive strain acting on core (shell) side of heterointerfaces in CdSe/CdS, CdSe/ZnS, and ZnSe/ZnS QDs increases (decreases) as shell diameter is increased, which causes increase (decrease) in core bandgap as sell (core) diameter is increased in these nanostructures. Furthermore, there is a parabolic increase in conduction band offsets and core bandgaps in CdSe/CdS, CdSe/ZnS, and ZnSe/ZnS QDs and decrease in conduction band offset and core bandgap of ZnSe/CdS QD as core (shell) diameter increases for fixed shell (core) diameter. Comparison shows that using isotropic elastic moduli in determining band offsets and core band gaps gives better agreement with experiment than anisotropic elastic moduli for core bandgaps of CdSe/CdS, CdSe/ZnS, ZnSe/ZnS, and ZnSe/CdS core/shell QDs. Furthermore, we also show that the strain-modified two band effective mass approximation can be used to determine band offsets by using measured core band gaps in core/shell heterostructure QDs with Type II interface band alignment. Excellent agreement between predicted and measured core bandgaps in CdSe and ZnSe based core/shell QDs suggests that proposed model can be a good design tool for process simulation of core/shell heterostructure QDs.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pelicano, Christian Mark, Itaru Raifuku, Yasuaki Ishikawa, Yukiharu Uraoka, and Hisao Yanagi. "Hierarchical core–shell heterostructure of H2O-oxidized ZnO nanorod@Mg-doped ZnO nanoparticle for solar cell applications." Materials Advances 1, no. 5 (2020): 1253–61. http://dx.doi.org/10.1039/d0ma00313a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhao, Yichen, Abhilash Sugunan, Qin Wang, Xuran Yang, David B. Rihtnesberg, and Muhammet S. Toprak. "Direct Determination of Spatial Localization of Carriers in CdSe-CdS Quantum Dots." Journal of Nanomaterials 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/321354.

Повний текст джерела
Анотація:
Colloidal quantum dots (QDs) have gained significant attention due to their tunable band gap, simple solution processability, ease of scale-up, and low cost. By carefully choosing the materials, core-shell heterostructure QDs (HQDs) can be further synthesized with a controlled spatial spread of wave functions of the excited electrons and holes for various applications. Many investigations have been done to understand the exciton dynamics by optical characterizations. However, these spectroscopic data demonstrate that the spatial separation of the excitons cannot distinguish the distribution of excited electrons and holes. In this work, we report a simple and direct method to determine the localized holes and delocalized electrons in HQDs. The quasi-type-II CdSe-CdS core-shell QDs were synthesized via a thermolysis method. Poly(3-hexylthiophene) (P3HT) nanofiber and ZnO nanorods were selected as hole and electron conductor materials, respectively, and were combined with HQDs to form two different nanocomposites. Photoelectrical properties were evaluated under different environments via a quick and facile characterization method, confirming that the electrons in the HQDs were freely accessible at the surface of the nanocrystal, while the holes were confined within the CdSe core.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Whi Dong, Sooho Lee, Chaewon Pak, Ju Young Woo, Kangha Lee, Fábio Baum, Jonghan Won, and Doh C. Lee. "Metal tips on pyramid-shaped PbSe/CdSe/CdS heterostructure nanocrystal photocatalysts: study of Ostwald ripening and core/shell formation." Chemical Communications 50, no. 14 (2014): 1719. http://dx.doi.org/10.1039/c3cc48919a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guo, Yating, Feng Gao, Pan Huang, Rong Wu, Wanying Gu, Jing Wei, Fangze Liu, and Hongbo Li. "Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets." Energy Material Advances 2022 (February 7, 2022): 1–24. http://dx.doi.org/10.34133/2022/9857943.

Повний текст джерела
Анотація:
Colloidal semiconductor nanocrystals (NCs) attract significant interest in recent years due to their narrow and tunable emission wavelength in the visible range, as well as high photoluminescence quantum yield (PLQY), which are highly desired in display technologies. The high-quality NCs have been recognized as vital luminescent materials in realizing next-generation display devices. With further development, NCs with near-unity PLQY have been successfully synthesized through engineering of the core/shell heterostructure. However, as the external quantum efficiency (EQE) of the nanocrystal light-emitting diodes (LEDs) approaches the theoretical limit of about 20%, the low out-coupling factor proposes a challenge of enhancing the performance of a device when using the spherical QDs. Hence, the anisotropic NCs like nanoplatelets (NPLs) are proposed as promising solutions to improve the performance of nanocrystal LEDs. In this review, we will summarize the synthetic strategies of two-dimensional (2D) NPLs at first. Then, we will introduce fundamental concepts of LEDs, the main approaches to realize LEDs based on nanoplatelets, and the recent progress. Finally, the challenges and opportunities of LEDs based on anisotropic NCs are also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nasser, Ramzi, Xiao-Lu Wang, Jian Tiantian, Habib Elhouichet, and Ji-Ming Song. "Hydrothermal design of CoMoO4@CoWO4 core-shell heterostructure for flexible all-solid-state asymmetric supercapacitors." Journal of Energy Storage 51 (July 2022): 104349. http://dx.doi.org/10.1016/j.est.2022.104349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії