Статті в журналах з теми "Nanocomposite, Electrical Properties"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nanocomposite, Electrical Properties.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nanocomposite, Electrical Properties".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Sabo, Y. T., D. E. A. Boryo, I. Y. Chindo, and A. M. Auwal. "Nanocomposites transformed from polystyrene waste/antimony, barium and nickel oxides nanoparticles with improved thermal and electrical properties." Nigerian Journal of Chemical Research 26, no. 2 (February 5, 2022): 117–27. http://dx.doi.org/10.4314/njcr.v26i2.7.

Повний текст джерела
Анотація:
In this experiment, the oxide nanoparticles were synthesized via chemical precipitation and the nanocomposites were produced using in situ polymerization method with varying nanoparticles contents ranged from 0.1 g to 1.0 g for electrical conductivity and from 0.05 g to 0.25 g for thermal conductivity. The electrical and thermal conductivities of nanocomposites were investigated and compared with the values obtained for untreated polystyrene. It was observed that the electrical and thermal properties were higher for the nanocomposites and increase with increasing nanoparticle concentrations in the samples. It can be observed that nanocomposite containing NiO nanoparticles gave a better electrical and thermal conductivity followed by nanocomposite containing BaO nanoparticles and nanocomposite containing Sb2O3 nanoparticles respectively. It can also be observed that nanocomposite containing NiO nanoparticle showed increase in rate of heat transfer from 1.60 W to 2.60 W, while nanocomposite containing BaO nanoparticles recorded increase in rate of heat transfer from 1.40 W to 2.45 W and nanoomposite containing Sb2O3 nanoparticle showed increase in rate of heat transfer from 1.07 W to 2.21 W, as concentration of nanoparticles increased from 0.05 g to 0.25 g respectively. Conclusively, with these results, the nanocomposite containing NiO nanoparticles gave a better thermal and electrical conductivity by having a better conducting filler network inside the matrix than nanocomposite containing BaO nanoparticles and nanocomposite containing Sb2O3 nanoparticles. It is recommended that during the production of polymer nanocomposite, PS/NiO, PS/BaO and PS/Sb2O3 nanocomposites could be used in electrically conductive devices as well as suitable materials for heat transfer applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Polsterova, Helena. "Dielectric Properties of Nanocomposites Based on Epoxy Resin." ECS Transactions 105, no. 1 (November 30, 2021): 461–66. http://dx.doi.org/10.1149/10501.0461ecst.

Повний текст джерела
Анотація:
Nanocomposites are subject of research in many fields of science. Electrical technology focused on the study of electrical properties of nanocomposites including breakdown strength, relative permittivity, resistivity and other. This paper describes the results of measurement of electrical parameters of a nanocomposite at various temperatures. The nanocomposite matrix was casting epoxy resin and nanoparticles were made of TiO2 powder at different concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

V. C. Morais, Manuel, Marco Marcellan, Nadine Sohn, Christof Hübner, and Frank Henning. "Process Chain Optimization for SWCNT/Epoxy Nanocomposite Parts with Improved Electrical Properties." Journal of Composites Science 4, no. 3 (August 14, 2020): 114. http://dx.doi.org/10.3390/jcs4030114.

Повний текст джерела
Анотація:
Electrically conductive nanocomposites present opportunities to replace metals in several applications. Usually, the electrical properties emerging from conductive particles and the resulting bulk values depend on the micro/nano scale morphology of the particle network formed during processing. The final electrical properties are therefore highly process dependent. In this study, the electrical resistivity of composites made from single-walled carbon nanotubes in epoxy was investigated. Three approaches along the processing chain were investigated to reduce the electrical resistivity of nanocomposites-the dispersion strategy in a three-roll mill, the curing temperature, and the application of electric fields during curing. It was found that a progressive increase in the shear forces during dispersion leads to a more than 50% reduction in the electrical resistivities. Higher curing temperatures of the nanocomposite resin also lead to a decrease of around 50% in resistivity. Furthermore, a scalable resin transfer molding set-up with gold-coated electrodes was developed and tested with different mold release agents. It has been shown that curing the material under electric fields leads to an electrical resistivity approximately an order of magnitude lower, and that the properties of the mold release agent also influence the final resistivity of different samples in the same batch.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cho, Kie Yong, A. Ra Cho, Yun Jae Lee, Chong Min Koo, Soon Man Hong, Seung Sangh Wang, Ho Gyu Yoon, and Kyung Youl Baek. "Enhanced Electrical Properties of PVDF-TrFE Nanocomposite for Actuator Application." Key Engineering Materials 605 (April 2014): 335–39. http://dx.doi.org/10.4028/www.scientific.net/kem.605.335.

Повний текст джерела
Анотація:
Carbon nanotubes (CNTs) coated by compatibilizer (P3HT-PMMA) imparted sta-ble dispersion in organic solvents and polymer matrix (P(VDF-TrFE)). The compatibility be-tween CNTs with P3HT-PMMA was con rmed by measuring Raman spectroscopy. CoatedCNTs were then blended with P(VDF-TrFE) (70:30 mol%) to obtain polymer nanocompositesby solution- casting process. Polymer nanocomposites showed enhanced electrical characteris-tics, as nanocomposites near the threshold of the transition between P(VDF-TrFE) insulatorand CNT conductor revealed great improvement of electrical conductivity up to 10-6 S/cmat 1 KHz. Electromechanical properties of the polymer nanocomposite were examined as afunction of electric eld.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kasım, Hasan, and Murat Yazıcı. "Electrical Properties of Graphene / Natural Rubber Nanocomposites Coated Nylon 6.6 Fabric under Cyclic Loading." Periodica Polytechnica Chemical Engineering 63, no. 1 (June 18, 2018): 160–69. http://dx.doi.org/10.3311/ppch.12122.

Повний текст джерела
Анотація:
In the present study, an elastomeric nanocomposite was prepared by two roller mixing mill with the Natural Rubber (NR) and Nano Graphene Platelets (NGP). The Nylon 6.6 cord fabrics were laminated with the prepared NR/NGP nanocomposite layers. The NR/NGP composites and Nylon 6.6 cord fabric laminated nanocomposite plates were cured at 165 °C for 10 min under pressure. Nylon 6.6 fabric reinforced NR/NGP nanocomposites were electrically characterized under free and cyclic loading conditions. NGP addition to NR improved the electrical conductivity. Under cyclic loading produced nanocomposite and cord fabric layered plates showed periodical sensing behavior with same amplitude in each period.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abou El Fadl, Faten Ismail, Maysa A. Mohamed, Magida Mamdouh Mahmoud, and Sayeda M. Ibrahim. "Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite." Radiochimica Acta 110, no. 2 (November 22, 2021): 133–44. http://dx.doi.org/10.1515/ract-2021-1080.

Повний текст джерела
Анотація:
Abstract Nanocomposites have received voluminous interest due to the combination of unique properties of organic and inorganic component in one material. In this class, magnetic polymer nanocomposites are of particular interest because of the combination of excellent magnetic properties, stability, and good biocompatibility. This paper reports the preparation and characterization of nanocomposites films based on natural rubber in latex state (NRL) loaded with different concentrations of semiconducting magnetite nanoparticles (Fe3O4) (MNPs) (5, 10, 15, 20, and 30%). NRL (100%) and NRL/Fe3O4 nanocomposites were prepared by solution casting technique then, exposed to various irradiation doses (50, 70, 100 kGy).The nanocomposite’s morphological, and physical properties were investigated through various spectroscopic techniques such as Fourier-transformed infrared, X-ray diffraction, scanning electron, and transmission electron microscopies. The mechanical properties, including the tensile strength and elongation at break percentage (E b %) of the nanocomposites were also studied and compared with the 100% NRL films. Based on the results obtained from the mechanical study, it is found that the NRL/20% Fe3O4 nanocomposite film exhibited the highest tensile strength at 100 kGy. On the other hand, based on the conductivity study, it is found that, NRL/Fe3O4 nanocomposite with 10% magnetite exhibit the highest conductivity as the content of magnetite plays an important and effective role based on the high and homogeneous dispersity.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ouis, Nora, Assia Belarbi, Salima Mesli, and Nassira Benharrats. "Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites." Chemistry & Chemical Technology 17, no. 1 (March 27, 2023): 118–25. http://dx.doi.org/10.23939/chcht17.01.118.

Повний текст джерела
Анотація:
A new nanocomposite based on conducting polyaniline (PANI) and Algerian montmorillonite clay dubbed Maghnite is proposed to combine conducting and thermal properties (Mag). The PANI-Mag nanocompo-sites samples were made by in situ polymerization with CTABr (cetyl trimethyl ammonium bromide) as the clay galleries' organomodifier. In terms of the PANI-Mag ratio, the electrical and thermal properties of the obtained nanocomposites are investigated. As the amount of Maghnite in the nanocomposite increases, thermal stability improves noticeably, as measured by thermal gravimetric analysis. The electric conductivity of nanocomposites is lower than that of free PANI. As the device is loaded with 5 % clay, the conductivity begins to percolate and decreases by many orders of magnitude. The findings show that the conductivity of nanocomposites is largely independent of clay loading and dispersion.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abdulla, Estabraq T. "Synthesis and electrical properties of conductive polyaniline/ SWCNT nanocomposites." Iraqi Journal of Physics (IJP) 15, no. 34 (January 8, 2019): 106–13. http://dx.doi.org/10.30723/ijp.v15i34.126.

Повний текст джерела
Анотація:
The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite have been measured in frequency range (50Hz - 600KHz) and in the temperature range from (30 to 160K). The results show the electrical conductivity of the nanocomposite is higher than pure PANI.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akhtarian, Shiva, Hadi Veladi, and Sajedeh Mohammadi Aref. "Fabrication and characterization of conductive poly(dimethylsiloxane)-carbon nanotube nanocomposites for potential microsensor applications." Sensor Review 39, no. 1 (January 21, 2019): 1–9. http://dx.doi.org/10.1108/sr-04-2017-0055.

Повний текст джерела
Анотація:
PurposeThe purpose of the study is to explore the potential possibility of using the conductive and piezoresistive nanocomposites that consist of insulating poly(dimethylsiloxane), a very popular silicone polymer, and the amazing properties of carbon nanotubes (CNT) in sensing applications. This nanocomposite is prepared by an optimized process to achieve a high-quality nanocomposite with uniform properties.Design/methodology/approachThe optimized process achieved in this study to provide PDMS/CNT nanocomposite includes the appropriate use of ultrasonic bath, magnetic stirrer, molding and curing in certain circumstances that results in obtaining high-quality nanocomposite with uniform properties. Experiments to characterize the influence of some factors such as pressure, temperature and the impact of CNT’s concentration on the electrical properties of the prepared nanocomposite have been designed and carried out.FindingsThe obtained preparing method of this nanocomposite is found to have better homogeneity in comparison to other methods for CNT/PDMS nanocomposite. This nanocomposite has both desirable properties of the PDMS elastomer and the additional conductive CNT, and it can be used to create all-polymer systems. Furthermore, the conductivity values of these nanocomposites can be changed by varying some factors such as temperature and pressure, so that those can be used in temperature- and pressure-sensoring applications.Originality/valueIn the present research, a convenient, inexpensive and reproducible method for preparing CNT/PDMS nanocomposite was investigated. These nanocomposites with the unique properties of both PDMS elastomer and CNTs and also with high electrical conductivity, piezoresistive properties and temperature dependent resistivity can be used in different sensoring applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Al-Saleh, Mohammed H., and Mohammad R. Irshidat. "Effect of viscosity reducing agent on the properties of CNT/epoxy nanocomposites." Journal of Polymer Engineering 36, no. 4 (May 1, 2016): 407–12. http://dx.doi.org/10.1515/polyeng-2015-0245.

Повний текст джерела
Анотація:
Abstract Epoxy nanocomposites that are produced in a solvent-free environment suffer from the inadequate dispersion of nanofiller and poor interfacial interaction between the nanofiller and polymer matrix. In this work, the effect of replacing a portion of the epoxy resin with a viscosity reducing agent (VRA) on the structure, electrical and mechanical properties of carbon nanotube (CNT)/epoxy nanocomposite have been investigated. Optical microscopy (OM) and transmission electron microscopy (TEM) were used to characterize the structure of the nanocomposite at the microscale and nanoscale, respectively. For nanocomposites without VRA, it was found that the addition of CNT degrades the tensile strength and toughness; meanwhile, it enhances the flexural modulus, Young’s modulus and electrical conductivity of the nanocomposite. However, the addition of VRA retained the tensile strength of the epoxy system and maintained the improvements in flexural strength and electrical conductivity that have been achieved due to CNT addition.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zheng, Wenyue, Lulu Ren, Xuetong Zhao, Can Wang, Lijun Yang, and Ruijin Liao. "Roles of Al2O3@ZrO2 Particles in Modulating Crystalline Morphology and Electrical Properties of P(VDF-HFP) Nanocomposites." Molecules 27, no. 13 (July 4, 2022): 4289. http://dx.doi.org/10.3390/molecules27134289.

Повний текст джерела
Анотація:
Polymer materials with excellent physicochemical and electrical properties are desirable for energy storage applications in advanced electronics and power systems. Here, Al2O3@ZrO2 nanoparticles (A@Z) with a core-shell structure are synthesized and introduced to a P(VDF-HFP) matrix to fabricate P(VDF-HFP)/A@Z nanocomposite films. Experimental and simulation results confirm that A@Z nanoparticles increase the crystallinity and crystallization temperature owing to the effect of the refined crystal size. The incorporation of A@Z nanoparticles leads to conformational changes of molecular chains of P(VDF-HFP), which influences the dielectric relaxation and trap parameters of the nanocomposites. The calculated total trapped charges increase from 13.63 μC of the neat P(VDF-HFP) to 47.55 μC of P(VDF-HFP)/5 vol%-A@Z nanocomposite, indicating a substantial improvement in trap density. The modulated crystalline characteristic and interfaces between nanoparticles and polymer matrix are effective in inhibiting charge motion and impeding the electric conduction channels, which contributes to an improved electrical property and energy density of the nanocomposites. Specifically, a ~200% and ~31% enhancement in discharged energy density and breakdown strength are achieved in the P(VDF-HFP)/5 vol%-A@Z nanocomposite.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Cuenca-Bracamonte, Quimberly, Mehrdad Yazdani-Pedram, and Héctor Aguilar-Bolados. "Electrical Properties of Polyetherimide-Based Nanocomposites Filled with Reduced Graphene Oxide and Graphene Oxide-Barium Titanate-Based Hybrid Nanoparticles." Polymers 14, no. 20 (October 11, 2022): 4266. http://dx.doi.org/10.3390/polym14204266.

Повний текст джерела
Анотація:
The electrical properties of nanocomposites based on polyetherimide (PEI) filled with reduced graphene oxide (rGO) and a graphene oxide hybrid material obtained from graphene oxide grafted with poly(monomethyl itaconate) (PMMI) modified with barium titanate nanoparticles (BTN) getting (GO-g-PMMI/BTN) were studied. The results indicated that the nanocomposite filled with GO-g-PMMI/BTN had almost the same electrical conductivity as PEI (1 × 10−11 S/cm). However, the nanocomposite containing 10 wt.% rGO and 10 wt.% GO-g-PMMI/BTN as fillers showed an electrical conductivity in the order of 1 × 10−7 S/cm. This electrical conductivity is higher than that obtained for nanocomposites filled with 10% rGO (1 × 10−8 S/cm). The combination of rGO and GO-g-PMMI/BTN as filler materials generates a synergistic effect within the polymeric matrix of the nanocomposite favoring the increase in the electrical conductivity of the system.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Doagou-Rad, Saeed, Aminul Islam, and Jakob Søndergaard Jensen. "Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites." Journal of Composite Materials 52, no. 26 (April 4, 2018): 3681–97. http://dx.doi.org/10.1177/0021998318768390.

Повний текст джерела
Анотація:
The influence of the processing variables and nanotube content on the mechanical and electrical properties of polyamide 6,6-based nanocomposites reinforced with multi-walled carbon nanotubes is investigated. Results show that variation in the processing variables such as compounding method, injection melt temperature, injection speed, mold temperature, and holding pressure varies the properties significantly. In fact, composites containing similar contents of the nanofillers show variations in mechanical properties up to 30.0% and in the electrical properties up to three orders of magnitude. Different processing parameters required for achieving optimal mechanical and electrical performances are also found. Correlation between processing parameters and microstructure within the nanocomposites is studied. Results show that variation of the processing parameters defines the existence or absence of a nanotube network in the nanocomposite structure. Experimental and micromechanical modeling results show that less control over the nanocomposite morphology and nanotube alignment is achievable in higher nanofiller contents. The underlying mechanisms responsible for the modulation in the properties are also discussed using scanning and transmission electron microscopy, rheological and crystallization investigations. The research provides a recipe to manufacture the tailored nanocomposite with the specified properties for various industrial applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Stanciu, Nicoleta-Violeta, Felicia Stan, Ionut-Laurentiu Sandu, Catalin Fetecau, and Adriana-Madalina Turcanu. "Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites." Polymers 13, no. 2 (January 7, 2021): 187. http://dx.doi.org/10.3390/polym13020187.

Повний текст джерела
Анотація:
In this paper, nanocomposites based on polypropylene (PP) filled with up to 5 wt.% of multi-walled carbon nanotubes (MWCNTs) were investigated for determining the material property data used in numerical simulation of manufacturing processes such as the injection molding and extrusion. PP/MWCNT nanocomposite pellets were characterized for rheological behavior, crystallinity, specific volume and thermal conductivity, while injection-molded samples were characterized for mechanical and electrical properties. The addition of MWCNTs does not significantly change the melting and crystallization behavior of the PP/MWCNT nanocomposites. The effect of MWCNTs on melt shear viscosity is more pronounced at low shear rates and MWCNT loadings of 1–5 wt.%. However, with the addition of up to 5 wt.% of MWCNTs, the PP/MWCNT nanocomposite still behaves like a non-Newtonian fluid. The specific volume of the PP/MWCNT nanocomposites decreases with increasing MWCNT loading, especially in the MWCNT range of 1–5 wt.%, indicating better dimensional stability. The thermal conductivity, depending on the pressure, MWCNT wt.% and temperature, did not exceed 0.35 W/m·K. The PP/MWCNT nanocomposite is electrical non-conductive up to 3 wt.%, whereas after the percolating path is created, the nanocomposite with 5 wt.% becomes semi-conductive with an electrical conductivity of 10−1 S/m. The tensile modulus, tensile strength and stress at break increase with increasing MWCNT loading, whereas the elongation at break significantly decreases with increasing MWCNT loading. The Cross and modified 2-domain Tait models are suitable for predicting the melt shear viscosity and specific volume as a function of MWCNTs, respectively. These results enable users to integrate the PP/MWCNT nanocomposites into computer aided engineering analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Yoo, S. H., J. K. Yang, Sung Tag Oh, Kae Myung Kang, Sung Goon Kang, C. J. Lee, and Yong Ho Choa. "The Synthesis and Characteristics of Homogenously Dispersed CNT-Al2O3 Nanocomposites by the Thermal CVD Method and Pulsed Electric Current Sintering Process." Solid State Phenomena 121-123 (March 2007): 295–98. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.295.

Повний текст джерела
Анотація:
An optimum route to synthesize Al2O3-based composite powders with a homogeneous dispersion of carbon nanotubes (CNTs) was investigated. CNT/Metal/Al2O3 nanocomposite powders were fabricated by thermal chemical vapor deposition (CVD) over a metal catalyst homogeneously dispersed into an Al2O3 matrix by the means of chemical and selective reduction processes. The nanocomposite powders were densified by Pulse Electric Current Sintering (PECS). The experimental results show that the CNT/Metal/Al2O3 nanocomposites have unique electrical properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Min, Daomin, Chenyu Yan, Rui Mi, Chao Ma, Yin Huang, Shengtao Li, Qingzhou Wu, and Zhaoliang Xing. "Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites." Polymers 10, no. 11 (October 30, 2018): 1207. http://dx.doi.org/10.3390/polym10111207.

Повний текст джерела
Анотація:
Dielectric energy storage capacitors have advantages such as ultra-high power density, extremely fast charge and discharge speed, long service lifespan and are significant for pulsed power system, smart power grid, and power electronics. Polypropylene (PP) is one of the most widely used dielectric materials for dielectric energy storage capacitors. It is of interest to investigate how to improve its electrical breakdown strength by nanodoping and the influencing mechanism of nanodoping on the electrical breakdown properties of polymer nanocomposites. PP/Al2O3 nanocomposite dielectric materials with various weight fraction of nanoparticles are fabricated by melt-blending and hot-pressing methods. Thermally stimulated current, surface potential decay, and dc electrical breakdown experiments show that deep trap properties and associated molecular chain motion are changed by incorporating nanofillers into polymer matrix, resulting in the variations in conductivity and dc electrical breakdown field of nanocomposite dielectrics. Then, a charge transport and molecular displacement modulated electrical breakdown model is utilized to simulate the dc electrical breakdown behavior. It is found that isolated interfacial regions formed in nanocomposite dielectrics at relatively low loadings reduce the effective carrier mobility and strengthen the interaction between molecular chains, hindering the transport of charges and the displacement of molecular chains with occupied deep traps. Accordingly, the electrical breakdown strength is enhanced at relatively low loadings. Interfacial regions may overlap in nanocomposite dielectrics at relatively high loadings so that the effective carrier mobility decreases and the interaction between molecular chains may be weakened. Consequently, the molecular motion is accelerated by electric force, leading to the decrease in electrical breakdown strength. The experiments and simulations reveals that the influence of nanodoping on dc electrical breakdown properties may origin from the changes in the charge transport and molecular displacement characteristics caused by interfacial regions in nanocomposite dielectrics.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kandulna, R., U. Das, Ms Rimpi, B. Kachhap, and N. Prasad. "Hybrid Polymeric Nanocomposites Based High Performance Oleds: A Review." Shodh Sankalp Journal 1, no. 3 (September 1, 2021): 16–34. http://dx.doi.org/10.54051/shodh.2021.1.3.1.

Повний текст джерела
Анотація:
This review reports the recent significant progress for achieving the synthesis of various types of polymer-based nanocomposites and understanding of the basic principle which determine their optical, electronic and magnetic properties. Some of the polymeric nanocomposite materials show remarkable electrical as well as optical properties regarding towards interest for applications in OLEDs. Nanoparticles which are basically inorganic, plays important role in the opto-electronic field. A nanoparticle with conjugate polymer matrix makes polymer nanocomposite and that nanocomposite used as an active emissive layer between the structures of optoelectronic device like OLEDs, OPVs etc. Application of such polymeric nanocomposite materials are discussed in this present communication with their success and failure, towards their optical as well as electrical properties in the fabrication of OLEDs.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

ZAVYALOV, S. A., E. I. GRIGORIEV, A. S. ZAVYALOV, I. A. MISURKIN, S. V. TITOV, T. S. ZHURAVLEVA, I. V. KLIMENKO, A. N. PIVKINA, E. M. KELDER, and J. SCHOONMAN. "STRUCTURE AND PROPERTIES OF TITANIUM–POLYMER THIN FILM NANOCOMPOSITES." International Journal of Nanoscience 04, no. 01 (February 2005): 149–61. http://dx.doi.org/10.1142/s0219581x05003000.

Повний текст джерела
Анотація:
Thin film titanium/poly-para-xylylene nanocomposites with controlled Ti content are prepared by vacuum coevaporation and cocondensation of Ti and paracyclophane. The structure and chemical composition of as-deposited samples and the changes of electrical resistivity, which they undergo upon heating, are studied by atomic force microscopy, optical absorption spectroscopy, and the temperature coefficient of the electrical resistivity. It is shown that vacuum coevaporation results in the production of nanocomposite thin films with average Ti particle size of 10–50 nm. The inorganic phase is shown to be amorphous Ti for the samples with high metal content, whereas for the low-filled nanocomposites it consists of amorphous titanium oxide. Two types of kinetics of the nanocomposite oxidation process have been found and modeled by (i) inverse logarithmic and (ii) logarithmic functions depending on the metal content within the thin film. After a long preconditioning period in air the electrical conductivity of the thin film nanocomposites was carefully investigated by two-probe DC measurements. A strong correlation between the concentration of Ti in the thin films and the electrical conductivity dependency on temperature is found and modeled by a heterogeneous model of conductivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Tarawneh, Mou’ad A., Sahrim Ahmad, and Ruey Shan Chen. "Mechanical, thermal, and electrical properties of graphene oxide–multiwalled carbon nanotubes-filled thermoplastic elastomer nanocomposite." Journal of Elastomers & Plastics 49, no. 4 (August 9, 2016): 345–55. http://dx.doi.org/10.1177/0095244316661753.

Повний текст джерела
Анотація:
This article studies the enhancement in the properties of thermoplastic natural rubber (TPNR) reinforced by graphene oxide (GnO) and multiwalled carbon nanotubes (MWCNTs). TPNR is a blend of polypropylene and liquid natural rubber (NR), which is used as a compatibilizer and NR at a percentage of volume ratio 70:10:20, respectively. Using TPNR as the host matrix, a number of TPNR/carbon nanotubes (CNTs), TPNR/GnO, and hybrid TPNR/GnO/CNTs nanocomposites are processed and their mechanical, thermal, and electrical properties are characterized. The results extracted from tensile and impact test showed that tensile strength, Young’s modulus, and storage modulus of TPNR/GnO/MWCNTs hybrid nanocomposite increased as compared with TPNR composite and TPNR/GnO nanocomposite but lower than TPNR/MWCNTs nanocomposite. On the other hand, the elongation at break considerably decreased with increasing the content of both types of nanoparticles. Based on the experimental results, the thermal, electrical conductivity of a 0.5 wt% MWCNTs-reinforced sample increased as compared with a pure TPNR and other MWCNTs/GnO-reinforced composites. The improved dispersion properties of the nanocomposites can be due to altered interparticle interactions. MWCNTs, GnO, and MWCNTs–GnO networks are well combined to generate a synergistic effect that is shown by scanning electron microscopy micrographs. With the existence of this network, the mechanical, thermal, and electrical properties of the nanocomposite were improved significantly.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Sahan, Mukhalad S. "Morphological and Electrical properties of Polyvinylpyrrolidone/Multi-walled Carbon Nanotubes Nanocomposite with Graphene." BASRA JOURNAL OF SCIENCE 40, no. 1 (June 3, 2022): 128–37. http://dx.doi.org/10.29072/basjs.20220107.

Повний текст джерела
Анотація:
The solution casting method was used to prepare a polyvinylpyrrolidone (PVP)/Multi-walled carbon nanotubes (MWCNTs) nanocomposite with Graphene (Gr). Field Effect Scanning Electron Microscope (FESEM) and Fourier Transformer Infrared (FTIR) were used to characterize the surface morphology and optical properties of samples. FESEM images revealed a uniform distribution of graphene within the PVP-MWCNT nanocomposite. The FTIR spectra confirmed the nanocomposite information is successful with apperaring the presence of primary distinct peaks belonging to vibration groups that describe the prepared samples.. Furthermore, found that the DC electrical conductivity of the prepared nanocomposites increases with increasing MWCNT concentration which is due to hopping conduction
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Sultan, Adil, Sharique Ahmad, and Faiz Mohammad. "Synthesis, Characterization and Electrical Properties of Polypyrrole/ Zirconia Nanocomposite and its Application as Ethene Gas Sensor." Polymers and Polymer Composites 25, no. 9 (November 2017): 695–704. http://dx.doi.org/10.1177/096739111702500908.

Повний текст джерела
Анотація:
In this communication, we report the synthesis of polypyrrole (PPy) and polypyrrole/zirconia (PPy/ZrO2) nanocomposites by an in-situ chemical polymerisation method and their application as sensor for detection of ethene gas for the first time. The as-prepared PPy and PPy/ZrO2 nanocomposites were characterised by Fourier-transform infrared spectroscopy, thermogravimetric analysis, x-ray diffraction and scanning electron microscopy. The nanocomposite containing 20 wt.% of ZrO2 was found to possess higher DC (direct current) electrical conductivity than PPy and the other PPy/ZrO2 nanocomposites. Sensing response was calculated on the basis of change in DC electrical conductivity. The most conductive nanocomposite was found to be highly sensitive and reversible to ethene gas. This study indicates an effective approach to possible future sensing technology for the detection of ethene gas.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

ABD RAZAK, SAIFUL IZWAN, SHARIF HUSSEIN SHARIF ZEIN, and ABDUL LATIF AHMAD. "MnO2-FILLED MULTIWALLED CARBON NANOTUBE/POLYANILINE NANOCOMPOSITES: EFFECT OF LOADING ON THE CONDUCTION PROPERTIES AND ITS PERCOLATION THRESHOLD." Nano 06, no. 01 (February 2011): 81–91. http://dx.doi.org/10.1142/s1793292011002378.

Повний текст джерела
Анотація:
This paper reports the synthesis and characterization of ternary nanocomposites consisting of polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) at different MWCNT– MnO2 loadings. The composite electrical percolation threshold is investigated as well. The in situ nanocomposites were characterized by UV-visible, Fourier transform and Raman spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, and electrical conductivity measurements. The conductivity of the nanocomposite reached up to 78.79 Scm-1 with 50 wt.% addition of MWCNT– MnO2 with good conduction stability and reversibility. The percolation threshold of this nanocomposite was achieved at 0.5 wt.%. Using the scaling law of the percolation theory, it was found that the theoretical conductivity of the nanocomposite exhibited an exponential factor, (t) of 1.38 instead of the universal t value of 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Nguyen, Trong Tung, and Ngoc Huyen Duong. "Effect of TiO2Rutile Additive on Electrical Properties of PPy/TiO2Nanocomposite." Journal of Nanomaterials 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/4283696.

Повний текст джерела
Анотація:
Polypyrrole/titanium dioxide nanocomposite (PPy/TiO2) was synthesized byin situchemical polymerization of pyrrole (Py) monomer in colloidal suspension of TiO2rutile. TEM and SEM images show that the TiO2is covered by PPy forming a core-shell structure. The PPy/TiO2core-shell will createn-pjunction and bring in an inversion layer on the PPy-shell surface. The feature is accounted for the modification in electrical properties of the PPy/TiO2nanocomposite. On the exposure to oxygen the conductivity of the nanocomposite exhibits an increase in 16–18-folds that are accounted for the interaction between oxygen (an electron acceptor) and the inversion layer. The cyclic voltammetry diagrams have shown that at around 15% TiO2and scan rate 100 mV/s the nanocomposites can reach a specific capacitance about 176 F/g.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Alhashmi Alamer, Fahad. "Highly Conductive Flexible Conductor Based on PEDOT:PSS/MWCNTs Nano Composite." Crystals 13, no. 2 (January 21, 2023): 192. http://dx.doi.org/10.3390/cryst13020192.

Повний текст джерела
Анотація:
Flexible textiles with strong electrical conductivities have enormous potential as active components in wearable electronics. In this study, we fabricated highly flexible electrical conductors based on cotton fabrics using multiwalled carbon nanotubes (MWCNTs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) nanocomposites. We propose that mixing and drop-casting with different amounts of MWCNTs and a fixed amount of doped PEDOT:PSS using a cotton fabric provides a wide range of conductivities depending on the amount of MWCNTs in the mixture. Scanning electron microscopy (SEM) confirmed that the distribution of MWCNTs in the PEDOT:PSS films coated the surface of the cotton fabric, thereby increasing its electrical conductivity. We found that the amount of MWCNTs significantly affected the electrical properties of the nanocomposite cotton in two ways. First, the sheet resistance of the nanocomposite cotton decreased from 78.35 Ω/□ to 2.86 Ω/□ when the concentration of the nanocomposite was increased from 9.21 wt% to 60.27 wt%. This implies that the electrical properties of the nanocomposite cotton can be adjusted by controlling the amount of MWCNTs in the blend. Moreover, we found that the relationship between the sheet resistance and nanocomposite concentration obeys the power law with an exponent α ~ 1.676. Second, the study of the effect of temperature on the resistance indicates that the conductive nanocomposite exhibits semiconductor behavior in the temperature range 24–120 °C and obeys the variable range hopping model. The characteristic temperatures, resistance prefactor, and density of localized states and activation energies depend on the concentration of MWCNTs and can be described by power laws with exponents of 0.470, −1.292, −0.470 and 0.118, respectively. The novel nanocomposite cotton fabric developed in this study exhibits suitable electrical and thermal properties and good long-term electrical stability, which make the nanocomposite cotton fabric a potential flexible conductor with a wide range of electrical conductivities, making it suitable for various applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Thabet, Ahmed, and Youssef A. Mobarak. "Predictable Models and Experimental Measurements for Electric Properties of Polypropylene Nanocomposite Films." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 1 (February 1, 2016): 120. http://dx.doi.org/10.11591/ijece.v6i1.9108.

Повний текст джерела
Анотація:
<span>This paper processed and characterized cost-fewer polypropylene (PP) nanocomposite films; an experimental work has been investigated for studying the electric properties of the new nanocomposite materials and compared with unfilled industrial materials in a frequency range up to 1 kHz. A small addition of nanoparticles (clay, and fumed silica) to polypropylene showed appreciable improvement in the electric reactance and conductance at different frequency up to 1kHz, in addition, an electric spectroscopy has been measured the electric properties of polypropylene with and without nanoparticles under variant temperatures (20°C, and 60°C). Cambridge Engineering Selector (CES) program were carried out the electrical/mechanical predictable models for the suggested materials. Finally, this paper leads to synthesize electrical insulating polypropylene nanocomposite films where the electrical properties are properly maintained in order to achieve more cost-effective, energy-effective and hence environmentally better materials for the electrical insulation technology.</span>
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Thabet, Ahmed, and Youssef A. Mobarak. "Predictable Models and Experimental Measurements for Electric Properties of Polypropylene Nanocomposite Films." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 1 (February 1, 2016): 120. http://dx.doi.org/10.11591/ijece.v6i1.pp120-129.

Повний текст джерела
Анотація:
<span>This paper processed and characterized cost-fewer polypropylene (PP) nanocomposite films; an experimental work has been investigated for studying the electric properties of the new nanocomposite materials and compared with unfilled industrial materials in a frequency range up to 1 kHz. A small addition of nanoparticles (clay, and fumed silica) to polypropylene showed appreciable improvement in the electric reactance and conductance at different frequency up to 1kHz, in addition, an electric spectroscopy has been measured the electric properties of polypropylene with and without nanoparticles under variant temperatures (20°C, and 60°C). Cambridge Engineering Selector (CES) program were carried out the electrical/mechanical predictable models for the suggested materials. Finally, this paper leads to synthesize electrical insulating polypropylene nanocomposite films where the electrical properties are properly maintained in order to achieve more cost-effective, energy-effective and hence environmentally better materials for the electrical insulation technology.</span>
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mostaani, F., M. R. Moghbeli, and H. Karimian. "Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites." Journal of Thermoplastic Composite Materials 31, no. 10 (November 1, 2017): 1393–415. http://dx.doi.org/10.1177/0892705717738294.

Повний текст джерела
Анотація:
Electrically conducting polyaniline/multiwalled carbon nanotubes (PANi/MWCNTs) nanocomposites were successfully synthesized via chemical oxidative polymerization. For this purpose, PANi was first prepared in an aqueous acidic medium, hydrochloric acid (HCl), at various temperatures to determine the proper polymerization temperature and to prepare the polymer with the highest electrical conductivity. For nanocomposite preparation, the polymerization of aniline (ANi) was carried out in the presence of various amounts of MWCNTs dispersed using a proper surfactant. The effect of HCl and MWCNT contents on the conductivity of the resultant composites was investigated. The results showed that the conductivity was monotonically increased with increasing the MWCNT and HCl levels. In addition, the effect of anionic and cationic surfactant type, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), on the conductivity and morphology of the resulting nanocomposites, was studied. Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, two- and four-point resistivity measuring methods, and field emission scanning electron microscopy (FESEM) were used to characterize the neat PANi and PANi/MWCNT nanocomposites. The conductivity variation of the conducting polymers versus elapsed time was investigated to determine the intensity and dominant aging mechanism. Electromagnetic shielding properties of the conducting nanocomposites were also studied. The results indicated that the nanocomposite with the highest MWCNTs level absorbed more than 83% of the incident electromagnetic waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Pati, Manoj Kumar. "Mechanical, Thermal, Optical and Electrical Properties of Graphene/ Poly (sulfaniic acid) Nanocomposite." Journal of Advance Nanobiotechnology 2, no. 4 (August 30, 2018): 39–50. http://dx.doi.org/10.28921/jan.2018.02.25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Dul, Sithiprumnea, Alessandro Pegoretti, and Luca Fambri. "Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes." Nanomaterials 8, no. 9 (August 29, 2018): 674. http://dx.doi.org/10.3390/nano8090674.

Повний текст джерела
Анотація:
The effects of carbonaceous nanoparticles, such as graphene (GNP) and multiwall carbon nanotube (CNT) on the mechanical and electrical properties of acrylonitrile–butadiene–styrene (ABS) nanocomposites have been investigated. Samples with various filler loadings were produced by solvent free process. Composites ABS/GNP showed higher stiffness, better creep stability and processability, but slightly lower tensile strength and electrical properties (low conductivity) when compared with ABS/CNT nanocomposites. Tensile modulus, tensile strength and creep stability of the nanocomposite, with 6 wt % of GNP, were increased by 47%, 1% and 42%, respectively, while analogous ABS/CNT nanocomposite showed respective values of 23%, 12% and 20%. The electrical percolation threshold was achieved at 7.3 wt % for GNP and 0.9 wt % for CNT. The peculiar behaviour of conductive CNT nanocomposites was also evidenced by the observation of the Joule’s effect after application of voltages of 12 and 24 V. Moreover, comparative parameters encompassing stiffness, melt flow and resistivity were proposed for a comprehensive evaluation of the effects of the fillers.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chen, Zhou, Junfeng Hu, Jiajun Ju, and Tairong Kuang. "Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO2 Foaming Process." Polymers 11, no. 11 (November 10, 2019): 1852. http://dx.doi.org/10.3390/polym11111852.

Повний текст джерела
Анотація:
Lightweight, high-strength and electrically conductive poly(butylene succinate) (PBS)/ carbon black (CB) nanocomposite foams with a density of 0.107–0.344 g/cm3 were successfully fabricated by a solid-state supercritical CO2 (ScCO2) foaming process. The morphology, thermal and dynamic mechanical properties, and rheological behavior of the PBS/CB nanocomposites were studied. The results indicate that the CB nanofiller was well dispersed in the PBS matrix and the presence of a proper CB nanofiller can accelerate the rate of crystallization, improve the thermal stability, enhance the stiffness, and increase the complex viscosity of PBS/CB nanocomposites. These improved properties were found to play an important role in the foaming process. The results from foaming experiments showed that the PBS/CB nanocomposite foams had a much smaller cell size, a higher cell density, and a more uniform cell morphology as compared to neat PBS foams. Furthermore, the PBS/CB nanocomposite foams also possessed low density (0.107–0.344 g/cm3), good electrical conductivity (~0.45 S/cm at 1.87 vol % CB loading), and improved compressive strength (108% increase), which enables them to be used as lightweight and high-strength functional materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Su, Li Fen, Lei Miao, and Sakae Tanemura. "ZnO/SiO2 Nanocomposite Cryogels Prepared by Vacuum Freeze Drying." Materials Science Forum 663-665 (November 2010): 1242–46. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.1242.

Повний текст джерела
Анотація:
In recent years, ZnO/SiO2 nanocomposite thin films have attracted much attention for a wide range of device applications based on their specific optical and electrical properties. Traditionally, the ZnO/SiO2 nanocomposites were prepared at the form of thin film because the ZnO/SiO2 nanocomposite gels are difficult to synthesize. Therefore, in the present study, a novel route of the mixed ZnO/SiO2 nanocomposite cryogels were prepared by sol-gel technology and dried by vacuum freeze drying. The wet gels were synthesized by co-precursor method with the precursors containing tetraethoxysilane [Si(OC2H5)4,TEOS] and zinc acetate [Zn(CH3COO)2.2H2O]. After vacuum freeze drying, the nanocomposites were annealed at different temperature. The properties of the resulting ZnO/SiO2 nanocomposite cryogels were characterized using Scanning Electron Microscopy (SEM), nitrogen absorption/desorption isotherms, thermogravimetric and differential scanning calorimeter (TG-DSC).
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Hrenechen, Jeferson Matos, Celso de Araujo Duarte, Ney Pereira Mattoso Filho, and Evaldo Ribeiro. "Electrical and Optical Properties of Silicone Oil/Carbon Nanotube Nanocomposites." Journal of Nanoscience and Nanotechnology 21, no. 4 (April 1, 2021): 2185–95. http://dx.doi.org/10.1166/jnn.2021.19073.

Повний текст джерела
Анотація:
The present work describes the preparation and the investigation of the room temperature electrical and optical properties of a series of liquid nanocomposites (lnC) prepared with different concentrations of multiwalled carbon nanotubes (MWCNT) in a variety of liquid matrices: glycerin, Vaseline, glucose, propylene glycol and silicone oil (SIO). Special attention is deserved to the SIO matrix, owing to its convenient electrical properties for our purposes. We verified that a small percent fraction of MWCNT dispersed along the SIO matrix is capable of improving the electrical conductivity of the matrix by orders of magnitude, indicating that the MWCNT strongly participates in the electrical conduction mechanism. Also, the application of an external electric field to this lnC resulted in large changes in the optical transmittance, that were interpreted as a consequence of the fieldinduced MWCNT alignment into the liquid matrix. The characteristics of such a new category of nanocomposite in the liquid state suggest further studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Arief, Yanuar Z., Mohd Izairi Ismail, Mohamad Zul Hilmey Makmud, Aulia, Zuraimy Adzis, and Nor Asiah Muhamad. "Partial Discharge Characteristics of Natural Rubber Blends with Inorganic Nanofiller as Electrical Insulating Material." Applied Mechanics and Materials 284-287 (January 2013): 188–92. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.188.

Повний текст джерела
Анотація:
In electrical engineering, electrical discharge can occur in gaseous, liquid or solid insulating medium. Localized dielectric breakdown that occur at a small portion of a solid or fluid electrical insulation under high voltage stress is called partial discharge (PD). This phenomenon can cause the material to breakdown if there is no proper action taken. Usually it begins within voids, cracks, or inclusions within a solid dielectric, at conductor-dielectric interfaces within solid and in bubbles within liquid dielectrics. In order to modify electrical properties of the original structure then nanocomposite need to be introduced. Nanocomposite is the original structure that has been inserted by nano component (nanofiller) such as silicone dioxide and titanium dioxide. Nanocomposites are also found in nature, for example in the structure of the abalone shell and bone. By adding nano component inside the original component, it can change the mechanical and electric properties. In this study, PD characteristics of polymer-natural rubber blends nanocomposite have been investigated. The samples of nanocomposites were developed by using extrusion method. The high voltage is applied at the electrode arrangement of the test sample. The signals of partial discharges are detected by CIGRE Method II and RC detector and the signals are transferred to the personal computer using LabViewTM software. The result from the software is analyzed to find out the PD characteristics. The results revealed that the highest PD numbers are compositions with no filler while the lowest PD numbers come from sample that use 4% SiO2 as its nanofiller. The physical morphology observation is also conducted to investigate the degradation of the samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Habib, Nasser Abdullah, Buong Woei Chieng, Norkhairunnisa Mazlan, Umer Rashid, Robiah Yunus, and Suraya Abdul Rashid. "Elastomeric Nanocomposite Based on Exfoliated Graphene Oxide and Its Characteristics without Vulcanization." Journal of Nanomaterials 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/8543137.

Повний текст джерела
Анотація:
Rubber nanocomposites have emerged as one of the advanced materials in recent years. The aim of this work was to homogeneously disperse graphene oxide (GO) sheets into Nitrile Butadiene Rubber (NBR) and investigate the characteristics of GO/NBR nanocomposite without vulcanization. A suitable solvent was found to dissolve dry NBR while GO was exfoliated completely in an aqueous base solution using sonication. GO was dispersed into NBR at different loadings by solution mixing to produce unvulcanized GO/NBR nanocomposites. Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) were used to characterize the samples. Furthermore, mechanical and electrical properties of unvulcanized GO/NBR nanocomposites were carried out to determine the influence of GO on the NBR properties. The results showed that the modulus of GO/NBR nanocomposite at 1 wt% of GO was enhanced by about 238% compared with unfilled NBR. These results provide insight into the properties of unvulcanized GO/NBR nanocomposite for application as coatings or adhesives.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bugaev, N. M., Ekaterina L. Kuznetsova, and Kyaw Ye Ko. "Thermophysical and Magnetic Properties of Magnetite – Polyethylene Composite." International Journal of Mechanics 15 (September 9, 2021): 165–71. http://dx.doi.org/10.46300/9104.2021.15.19.

Повний текст джерела
Анотація:
In this work, it is shown that the advantage of using matrix-stabilized magnetic nanoparticles to obtain polymer nanocomposites based on them is that such nanoparticles retain their dispersion and stability of size and shape in the technological modes of obtaining polymer nanocomposite materials, and thus ensured stable ferro- and superparamagnetic properties of the obtained target products. For the production of films by the method of hot pressing from blanks obtained in an injection molding machine or a mechanochemical mixture, a manual electrically heated hydraulic press was used. The magnetic properties of nanocomposite samples (about 50 mg on average) were studied using a vibration magnetometer. The character of the dependence of the magnetization on the magnitude of the magnetic field confirms the ferromagnetic character of the behavior of the obtained nanocomposites. The resulting film nanocomposites exhibit ferromagnetic properties at room temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Armentano, Ilaria, Matteo Gigli, Francesco Morena, Chiara Argentati, Luigi Torre, and Sabata Martino. "Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine." Applied Sciences 8, no. 9 (August 24, 2018): 1452. http://dx.doi.org/10.3390/app8091452.

Повний текст джерела
Анотація:
In the last decade, biopolymer matrices reinforced with nanofillers have attracted great research efforts thanks to the synergistic characteristics derived from the combination of these two components. In this framework, this review focuses on the fundamental principles and recent progress in the field of aliphatic polyester-based nanocomposites for regenerative medicine applications. Traditional and emerging polymer nanocomposites are described in terms of polymer matrix properties and synthesis methods, used nanofillers, and nanocomposite processing and properties. Special attention has been paid to the most recent nanocomposite systems developed by combining alternative copolymerization strategies with specific nanoparticles. Thermal, electrical, biodegradation, and surface properties have been illustrated and correlated with the nanoparticle kind, content, and shape. Finally, cell-polymer (nanocomposite) interactions have been described by reviewing analysis methodologies such as primary and stem cell viability, adhesion, morphology, and differentiation processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ramakrishnaiah, Thejas, Prasanna Gunderi Dhananjaya, Chaturmukha Vakwadi Sainagesh, Sathish Reddy, Swaroop Kumaraswamy, and Naveen Chikkahanumajja Surendranatha. "A review: electrical and gas sensing properties of polyaniline/ferrite nanocomposites." Sensor Review 42, no. 1 (January 5, 2022): 164–75. http://dx.doi.org/10.1108/sr-02-2021-0051.

Повний текст джерела
Анотація:
Purpose This paper aims to study the various developments taking place in the field of gas sensors made from polyaniline (PANI) nanocomposites, which leads to the development of high-performance electrical and gas sensing materials operating at room temperature. Design/methodology/approach PANI/ferrite nanocomposites exhibit good electrical properties with lower dielectric losses. There are numerous reports on PANI and ferrite nanomaterial-based gas sensors which have good sensing response, feasible to operate at room temperature, requires less power and cost-effective. Findings This paper provides an overview of electrical and gas sensing properties of PANI/ferrite nanocomposites having improved selectivity, long-term stability and other sensing performance of sensors at room temperature. Originality/value The main purpose of this review paper is to focus on PANI/ferrite nanocomposite-based gas sensors operating at room temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Bilisik, Kadir, and Mahmuda Akter. "Graphene nanoplatelets/epoxy nanocomposites: A review on functionalization, characterization techniques, properties, and applications." Journal of Reinforced Plastics and Composites 41, no. 3-4 (October 7, 2021): 99–129. http://dx.doi.org/10.1177/07316844211049277.

Повний текст джерела
Анотація:
Graphene nanoplatelets (GNPs) have received immense attention from the global scientific research community in the 21st century due to their two-dimensional planar structure, high surface area, functionalization abilities, and notable thermal-mechanical-electrical properties. When appropriately integrated into polymer matrices, graphene nanosheets improve the mechanical performance of polymer under static and high-strain rate loading. On the other hand, surface modification of GNPs through functionalization enhances dispersibility and interfacial strength of GNPs/polymer composites. Computational methods for GNPs-based nanocomposites considering micromechanical and multiscale modeling were also developed to predict their thermo-mechanical and electrical properties. These nanocomposite materials have been identified as having a wide range of applications in aerospace, automotive, construction, biomedical, energy storage, sensor, and textiles. In this review paper, recent advances of GNPs/epoxy nanocomposites, including their functionalization processes, characterization techniques, production methods, properties, and potential applications, have been comprehensively explained. Furthermore, it attempts to provide a complete framework for researchers by summarizing and evaluating the extensive literature on these nanocomposite materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Filice, Simona, Stefano Boscarino, Mario Scuderi, Sebania Libertino, Clelia Galati, Antonio Terrasi, and Silvia Scalese. "AZO Nanoparticles-Decorated CNTs for UV Light Sensing: A Structural, Chemical, and Electro-Optical Investigation." Nanomaterials 13, no. 1 (January 3, 2023): 215. http://dx.doi.org/10.3390/nano13010215.

Повний текст джерела
Анотація:
Nanocomposites formed by aluminum-doped zinc oxide nanoparticles (AZO–NP) and multiwall carbon nanotubes (CNT) are proposed here as a promising material for UV light sensing applications, with the great advantage of operating in air, at room temperature, and at low voltage. Nanocomposite layers were prepared with different AZO:CNT weight ratios by a simple methodology at room temperature. They were characterized by means of UV–Vis spectroscopy, scanning and transmission electron microscopies (SEM and TEM), and X-ray photoelectron spectroscopy (XPS). The interaction between the two nanomaterials was demonstrated by comparing the properties of the nanocomposite with the ones shown by the AZO–NPs. Dense AZO–CNT nanocomposite layers were deposited between two metal electrodes on a SiO2/Si substrate, and the electrical properties were investigated in dark condition and under UV light irradiation. The electrical response to the UV light was a sudden current increase that reduced when the light was switched off. Several UV on/off cycles were performed, showing good repeatability and stability of the response. The mechanisms involved in the electrical response are discussed and compared to the ones previously reported for ZnO–CNT nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Vanin, A. I., Yu A. Kumzerov, V. G. Solov’ev, S. D. Khanin, S. E. Gango, M. S. Ivanova, M. M. Prokhorenko, S. V. Trifonov, A. V. Cvetkov, and M. V. Yanikov. "Electrical and Optical Properties of Nanocomposites Fabricated by the Introduction of Iodine in Porous Dielectric Matrices." Glass Physics and Chemistry 47, no. 3 (May 2021): 229–34. http://dx.doi.org/10.1134/s1087659621030123.

Повний текст джерела
Анотація:
Abstract The electrical and optical properties of nanocomposite materials fabricated by the dispersion of iodine in porous dielectric matrices of zeolites, zeolite-like aluminum phosphates, opals, asbestos, and porous aluminum oxide are studied. It is demonstrated that the physical properties of the produced nanocomposites depend significantly on the structure of a matrix.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Chandra, R. B. Jagadeesh, B. Shivamurthy, M. Sathish Kumar, Niranjan N. Prabhu, and Devansh Sharma. "Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites." Journal of Composites Science 7, no. 3 (March 14, 2023): 117. http://dx.doi.org/10.3390/jcs7030117.

Повний текст джерела
Анотація:
Polymer nanocomposites have attracted global attention as a metal replacement for electrical and electronic applications. Graphene nanoplatelets (GNPs) are widely used as a nanoreinforcement to enhance the functional and structural properties of thermoset and thermoplastic polymers. In the present study, ABS nanocomposites were prepared by reinforcing 3–15 wt.% GNPs in steps of 3 wt.%. The neat ABS and ABS+GNP nanocomposite specimens for the mechanical test were prepared using injection molding, followed by extrusion, as per American Society for Testing and Materials (ASTM) standards. It was found that the modulus of ABS improved due to the reinforcement of GNPs. Additionally, we noticed higher thermal stability of nanocomposites due to the faster heat-conducting path developed in the nanocomposites by the presence of GNPs. However, observed agglomeration of GNPs at higher concentrations and poor wetting with ABS led to the deterioration of the mechanical properties of the nanocomposites. Moreover, 350 µm thick nanocomposite films were manufactured by compression molding, followed by the extrusion method, and we investigated their electrical conductivity, magnetic permeability, permittivity, and electromagnetic-wave-shielding effectiveness. The developed nanocomposites showed improved conductivity and effective electromagnetic wave shielding by absorption. The 15 wt.% GNP-reinforced ABS composite film showed a maximum shielding effectiveness of 30 dB in the X-band.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Yang, Mei Jun, Wei Jun Luo, Qiang Shen, Hong Yi Jiang, and Lian Meng Zhang. "Preparation and Thermoelectric Properties of Bi-Doped Mg2Si Nanocomposites." Advanced Materials Research 66 (April 2009): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amr.66.17.

Повний текст джерела
Анотація:
Nanocomposites and heavy doping both are regarded as effective way to improve materials’ thermoelectric properties. 0.7at% Bi-doped Mg2Si nanocomposites were prepared by spark plasma sintering. Results of thermoelectric properties tests show that the doping of Bi atom effectively improves the electrical conductivity of Mg2Si,and the nanocomposite structures are helpful to reduce thermal conductivity and increase Seebeck coefficient, hence improving the thermoelectric performance. A maximum dimensionless figure of merit of 0.8 is obtained for the Bi-doped Mg2Si nanocomposite with 50 wt % nanopowder inclusions at 823K, about 63% higher than that of Bi-doped Mg2Si sample without nanopowder inclusions and 119% higher than that of microsized Mg2Si sample without Bi-doped, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

NOH, HYUN-JI, SUNG-PILL NAM, SUNG-GAP LEE, BYEONG-LIB AHN, WOO-SIK WON, HYOUNG-GWAN WOO, and SANG-MAN PARK. "ELECTRICAL AND MECHANICAL CHARACTERISTICS OF EPOXY-NANOCLAY COMPOSITE." Modern Physics Letters B 23, no. 31n32 (December 30, 2009): 3925–30. http://dx.doi.org/10.1142/s0217984909022010.

Повний текст джерела
Анотація:
In this study, we investigated the effects of nanoclay additives on the electrical and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) epoxy resin. Epoxy-clay nanocomposites were synthesized using organically modified two montmorillonite clays (MMT) with different interlamellar spacing (31.5 Å and 18.5 Å). The electrical and mechanical properties of epoxy-clay nanocopomosites were measured with variation of the amount and type of clay. The nanocomposites were found to be homogenous materials although the nanocomposites still have clay aggregates with increasing nanoclay contents. The dielectric constant showed between 3.2 ~ 3.5 and the dielectric loss showed between 3.2 ~ 5.7% in all nanocoposites. The dielectric strength and tensile strength of the 5 wt% Cloisite 15A added epoxy-oclay nanocomposite were 23.9 kV/mm and 86.7 MPa, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Darabi, Marjan, and Masoud Rajabi. "Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method." Metallurgical and Materials Engineering 23, no. 4 (January 9, 2018): 319–34. http://dx.doi.org/10.30544/244319.

Повний текст джерела
Анотація:
In this research, copper (Cu)-carbon nanotubes (CNTs) nanocomposites were synthesized with different weight percentages of CNTs by double pressing double sintering (DPDS) method as well as conventional sintering method. A planetary ball mill was used to disperse CNTs in Cu matrix. The milled powders were first cold pressed to 450 MPa in a uniaxial stainless-steel die with cylindrical compacts (diameter: 12 mm and height: 5 mm). The effect of CNTs content and the DPDS method on the properties of the nanocomposites were investigated. The microstructure and phase analysis of Cu-CNTs nanocomposite samples were studied by FESEM and X-Ray Diffraction. The electrical conductivity of nanocomposites was measured and compared to both sintering methods. Mechanical properties of Cu-CNTs nanocomposites were characterized using bending strength and micro-hardness measurements. Enhancements of about 32% in bending strength, 31.6% in hardness and 19.5% in electrical conductivity of Cu-1 wt.% CNTs nanocomposite synthesized by DPDS method were observed as compared to Cu-1 wt.% CNTs nanocomposites fabricated under the similar condition by a conventional sintering process.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ahmadian Hoseini, Amir Hosein, Elnaz Erfanian, Milad Kamkar, Uttandaraman Sundararaj, Jian Liu, and Mohammad Arjmand. "Waste to Value-Added Product: Developing Electrically Conductive Nanocomposites Using a Non-Recyclable Plastic Waste Containing Vulcanized Rubber." Polymers 13, no. 15 (July 23, 2021): 2427. http://dx.doi.org/10.3390/polym13152427.

Повний текст джерела
Анотація:
This study intends to show the potential application of a non-recyclable plastic waste towards the development of electrically conductive nanocomposites. Herein, the conductive nanofiller and binding matrix are carbon nanotubes (CNT) and polystyrene (PS), respectively, and the waste material is a plastic foam consisting of mainly vulcanized nitrile butadiene rubber and polyvinyl chloride (PVC). Two nanocomposite systems, i.e., PS/Waste/CNT and PS/CNT, with different compositions were melt-blended in a mixer and characterized for electrical properties. Higher electrical conduction and improved electromagnetic interference shielding performance in PS/Waste/CNT system indicated better conductive network of CNTs. For instance, at 1.0 wt.% CNT loading, the PS/Waste/CNT nanocomposites with the plastic waste content of 30 and 50 wt.% conducted electricity 3 and 4 orders of magnitude higher than the PS/CNT nanocomposite, respectively. More importantly, incorporation of the plastic waste (50 wt.%) reduced the electrical percolation threshold by 30% in comparison with the PS/CNT nanocomposite. The enhanced network of CNTs in PS/Waste/CNT samples was attributed to double percolation morphology, evidenced by optical images and rheological tests, caused by the excluded volume effect of the plastic waste. Indeed, due to its high content of vulcanized rubber, the plastic waste did not melt during the blending process. As a result, CNTs concentrated in the PS phase, forming a denser interconnected network in PS/Waste/CNT samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ahmed, R. M., and R. M. M. Morsi. "Polymer nanocomposite dielectric and electrical properties with quantum dots nanofiller." Modern Physics Letters B 31, no. 30 (October 26, 2017): 1750278. http://dx.doi.org/10.1142/s0217984917502785.

Повний текст джерела
Анотація:
Nanocomposite films of different contents of CdSe/ZnS quantum dots nanoparticles embedded in hosting matrix of polyvinyl chloride (PVC) were prepared by simple solution casting method. Electrical and dielectric properties of nanocomposites films were investigated in the temperature range 323–393 (K) and at frequencies (50–2000) kHz. The frequency dependence of AC conductivity was following the universal power law. The values of the frequency exponent, s, revealed that the conduction mechanism at low temperature is considered by small polaron tunneling model, whereas at high temperature, it is related to CBH model. The activation energy values [Formula: see text] were depending on nanoparticle concentration as well as frequency. Also, X-ray diffraction (XRD) enabled approximately estimating the average particle size of the nanoparticles incorporated in PVC.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wang, Shaojing, Peng Xu, Xiangyi Xu, Da Kang, Jie Chen, Zhe Li, and Xingyi Huang. "Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host–Guest Interface by Phosphonic Acids." Molecules 27, no. 21 (October 25, 2022): 7225. http://dx.doi.org/10.3390/molecules27217225.

Повний текст джерела
Анотація:
Polymer nanocomposites have attracted broad attention in the area of dielectric and energy storage. However, the electrical and chemical performance mismatch between inorganic nanoparticles and polymer leads to interfacial incompatibility. In this study, phosphonic acid molecules with different functional ligands were introduced to the surface of BaTiO3 (BT) nanoparticles to tune their surface properties and tailor the host–guest interaction between BT and poly(vinylideneflyoride-co-hexafluroro propylene) (P(VDF-HFP)). The dielectric properties and electrical energy storage capability of the nanocomposites were recorded by broadband dielectric spectroscopy and electric displacement measurements, respectively. The influence of the ligand length and polarity on the dielectric properties and electrical energy storage of the nanocomposites was documented. The nanocomposite with 5 vol% 2,3,4,5,6-pentafluorobenzyl phosphonic acid (PFBPA)-modified BT had the highest energy density of 12.8 J cm−3 at 400 MV m−1, i.e., a 187% enhancement in the electrical energy storage capability over the pure P(VDF-HFP). This enhancement can be attributed to the strong electron-withdrawing effect of the pentafluorobenzyl group of PFBPA, which changed the electronic nature of the polymer–particle interface. On the other hand, PFBPA improves the compatibility of the host–guest interface in the nanocomposites and decreases the electrical mismatch of the interface. These results provide new insights into the design and preparation of high-performance dielectric nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Melo, Diego S., Idalci C. Reis, Júlio C. Queiroz, Cicero R. Cena, Bacus O. Nahime, José A. Malmonge, and Michael J. Silva. "Evaluation of Piezoresistive and Electrical Properties of Conductive Nanocomposite Based on Castor-Oil Polyurethane Filled with MWCNT and Carbon Black." Materials 16, no. 8 (April 19, 2023): 3223. http://dx.doi.org/10.3390/ma16083223.

Повний текст джерела
Анотація:
Flexible films of a conductive polymer nanocomposite-based castor oil polyurethane (PUR), filled with different concentrations of carbon black (CB) nanoparticles or multiwall carbon nanotubes (MWCNTs), were obtained by a casting method. The piezoresistive, electrical, and dielectric properties of the PUR/MWCNT and PUR/CB composites were compared. The dc electrical conductivity of both PUR/MWCNT and PUR/CB nanocomposites exhibited strong dependences on the concentration of conducting nanofillers. Their percolation thresholds were 1.56 and 1.5 mass%, respectively. Above the threshold percolation level, the electrical conductivity value increased from 1.65 × 10−12 for the matrix PUR to 2.3 × 10−3 and 1.24 × 10−5 S/m for PUR/MWCNT and PUR/CB samples, respectively. Due to the better CB dispersion in the PUR matrix, the PUR/CB nanocomposite exhibited a lower percolation threshold value, corroborated by scanning electron microscopy images. The real part of the alternating conductivity of the nanocomposites was in accordance with Jonscher’s law, indicating that conduction occurred by hopping between states in the conducting nanofillers. The piezoresistive properties were investigated under tensile cycles. The nanocomposites exhibited piezoresistive responses and, thus, could be used as piezoresistive sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Pattanshetti, Virappa Virupaxappa, G. M. Shashidhara, and Mysore Guruswamy Veena. "Dielectric and thermal properties of magnesium oxide/poly(aryl ether ketone) nanocomposites." Science and Engineering of Composite Materials 25, no. 5 (September 25, 2018): 915–25. http://dx.doi.org/10.1515/secm-2016-0273.

Повний текст джерела
Анотація:
AbstractIn the present study, dielectric and thermal properties of poly(aryl ether ketone) (PAEK)-nanocomposites with varying weight percentage of magnesium oxide (MgO) have been reported. The thermal properties of PAEK/MgO nanocomposites were studied using differential scanning calorimetry, thermogravimetric analysis, thermo-mechanical analysis and thermal conductivity. Transmission electron microscopy of the developed nanocomposites shows agglomerate-free dispersion of MgO nanoparticles in PAEK matrix. From the dielectric properties, dielectric constant of 13 was achieved for 10 wt% PAEK/MgO nanocomposite at 230°C. Further, minimum tan δ and maximum volume resistivity were found for 10 wt% PAEK/MgO nanocomposite. Data from thermal studies indicate that the incorporation of MgO into PAEK significantly enhanced the glass transition temperature and slightly deteriorated the thermal stability, char yield, and flame-retardant properties. Also, highest thermal conductivity and lowest coefficient of thermal expansion were achieved at 10 wt% of the MgO content. An excellent combination of both dielectric and thermal properties of the PAEK/MgO nanocomposites developed in the present study finds its potential application in microelectronics and electrical insulation in power equipments.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Backes, Eduardo H., Fabio R. Passador, Christian Leopold, Bodo Fiedler, and Luiz A. Pessan. "Electrical, thermal and thermo-mechanical properties of epoxy/multi-wall carbon nanotubes/mineral fillers nanocomposites." Journal of Composite Materials 52, no. 23 (March 12, 2018): 3209–17. http://dx.doi.org/10.1177/0021998318763497.

Повний текст джерела
Анотація:
Epoxy/multi-wall carbon nanotubes and epoxy/multi-wall carbon nanotubes/mineral fillers nanocomposites were produced via in situ polymerization assisted by three-roll-milling. Epoxy/multi-wall carbon nanotubes nanocomposites presented very low electrical percolation threshold, near to 0.05 wt %. In this study, we used different mineral fillers, with different aspect ratios: calcium carbonate, montmorillonite, and sepiolite. We evaluated the effect of the addition of these fillers on electrical, thermal, and thermo-mechanical properties of epoxy/multi-wall carbon nanotubes nanocomposites. The addition of calcium carbonate in epoxy/multi-wall carbon nanotubes nanocomposites increased the electrical conductivity of this nanocomposite, due to volume exclusion effect. The addition of sepiolite decreased the loss factor and improved electrical constant, however, reduced the electrical conductivity in these nanocomposites, when compared to epoxy/multi-wall carbon nanotubes. Regarding thermal properties, no significant change in glass transition was observed. Thermo-mechanical analysis for nanocomposites showed slight changes in tan (δ) and storage modulus, which is related to the interaction between epoxy, multi-wall carbon nanotubes and mineral fillers.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії