Добірка наукової літератури з теми "NANOCOMPOSITE AND PEDOT"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "NANOCOMPOSITE AND PEDOT".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "NANOCOMPOSITE AND PEDOT"

1

Syed Zainol Abidin, Shariffah Nur Jannah, Nur Hawa Nabilah Azman, Shalini Kulandaivalu, and Yusran Sulaiman. "Poly(3,4-ethylenedioxythiophene) Doped with Carbon Materials for High-Performance Supercapacitor: A Comparison Study." Journal of Nanomaterials 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/5798614.

Повний текст джерела
Анотація:
A comparative study of multiwalled carbon nanotube (MWCNT), graphene oxide (GO), and nanocrystalline cellulose (NCC) as a dopant in the preparation of poly(3,4-ethylenedioxythiophene)- (PEDOT-) based hybrid nanocomposites was presented here. The hybrid nanocomposites were prepared via the electrochemical method in aqueous solution. The FTIR and Raman spectra confirmed the successful incorporation of dopants (MWCNT, GO, and NCC) into PEDOT matrix in the process of formation of the hybrid nanocomposites. It was observed that the choice of the carbon material affected the morphologies and supercapacitive properties of the hybrid nanocomposites. Incorporation of GO with PEDOT produces a paper-like sheet nanocomposite in which the wrinkled surface results in larger surface area compared to the network-like and rod-like structures of PEDOT/MWCNT and PEDOT/NCC, respectively. Owing to larger surface area, PEDOT/GO exhibits the highest specific capacitance (120.13 F/g), low equivalent series resistance (34.44 Ω), and retaining 87.99% of the initial specific capacitance after 1000 cycles, signifying a long-term cycling stability. Furthermore, the high performance of PEDOT/GO is also demonstrated by its high specific energy and specific power.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Murugan, A. Vadivel, Mathieu Quintin, Marie-Helene Delville, Guy Campet, Annamraju Kasi Viswanath, Chinnakonda S. Gopinath, and K. Vijayamohanan. "Synthesis and characterization of organic–inorganic poly(3,4-ethylenedioxythiophene)/MoS2 nanocomposite via in situ oxidative polymerization." Journal of Materials Research 21, no. 1 (January 1, 2006): 112–18. http://dx.doi.org/10.1557/jmr.2006.0015.

Повний текст джерела
Анотація:
Here we demonstrate the synthesis of a new type of layered poly(3,4-ethylenedioxy- thiophene) (PEDOT)/MoS2 nanocomposite via flocculation of delaminated MoS2 with subsequent in situ oxidative polymerization of 3,4-ethylenedioxythiophene. The resulting nanocomposite was characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, thermal analysis, transmission electron microscopy, and four-probe electrical conductivity measurements with respect to temperature. X-ray diffraction results indicated that the exfoliated MoS2 and PEDOT are restacked to produce a novel nanoscale composite material containing alternate nanoribbons of PEDOT in between MoS2 with a basal distance of ∼1.38 nm. The nanocomposite, which could be used as a cathode material for small power rechargeable lithium batteries, has also been demonstrated by the electrochemical insertion of lithium into the PEDOT/MoS2 nanocomposite, where a significant enhancement in the discharge capacity is observed, compared to that of respective pristine molybdenum disulfide.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Yu Lin, Yong Xiang Zhai, Xiao Ya Liu, Jing Luo, and Yan Yuan. "One-Pot Synthesis of UV-Curable Au/PEDOT Conductive Ink by Using Amphiphilic Polymer PSMH as Templates." Applied Mechanics and Materials 748 (April 2015): 101–6. http://dx.doi.org/10.4028/www.scientific.net/amm.748.101.

Повний текст джерела
Анотація:
In this paper, we report a one-pot method to prepare a new type of UV-curable Au/PEDOT nanocomposite used in printed electronics, which use an amphiphilic polymer polystyrenesulfonate-alt-[maleic anhydride-g-(2-hydroxy-ethyl-methacrylate)] (PSMH) as a conductive ink. The synthesis included the reduction of chloroauric acid using EDOT (3, 4-Ethylenedioxythiophene).PSMH acted a dopant for PEDOT and a stabilizer of Au nanoparticles due to the ligand exchange between chloroauric acid and carboxylate group. The carbon-carbon double bonds have been introduced into this ink with UV-curable property to enhance the water resistance of this nanocomposite before inkjet-printing. The particle size of this nanocomposite is above 200 nm while the gold particles size is above 3~10 nm. This UV-curable Au/PEDOT nanocomposite can be used as a conductive ink for inkjet printing.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alsultan, Mohammed, Anwer M. Ameen, Amar Al-keisy, and Gerhard F. Swiegers. "Conducting-Polymer Nanocomposites as Synergistic Supports That Accelerate Electro-Catalysis: PEDOT/Nano Co3O4/rGO as a Photo Catalyst of Oxygen Production from Water." Journal of Composites Science 5, no. 9 (September 12, 2021): 245. http://dx.doi.org/10.3390/jcs5090245.

Повний текст джерела
Анотація:
This work describes how conducting polymer nanocomposites can be employed as synergistic supports that significantly accelerate the rate of electro-catalysis. The nanocomposite PEDOT/nano-Co3O4/rGO is discussed as an example in this respect, which is specific for photo electro-catalytic oxygen (O2) generation from water using light (PEDOT = poly (3,4-ethylenedioxythiophene); rGO = reduced graphene oxide). We show that the conducting polymer PEDOT and the conductive additive rGO may be used to notably amplify the rate of O2-generation from water by the nano catalyst, Co3O4. A composite film containing the precise molar ratio 7.18 (C; PEDOT):1 (Co):5.18 (C; rGO) exhibited high photocatalytic activity (pH 12) for the oxygen evolution reaction (OER) at 0.80 V (vs. Ag/AgCl), with a current density of 1000 ± 50 μA/cm2 (including a photocurrent of 500 μA/cm2), achieved after >42 h of operation under illumination with a light of intensity 0.25 sun. By comparison, the best industrial catalyst, Pt, yielded a much lower 150 μA/cm2 under the same conditions. Oxygen gas was the sole product of the reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

KIAMAHALLEH, MEISAM VALIZADEH, CHAN IOU CHENG, SUHAIRI ABD SATA, SURANI BUNIRAN, and SHARIF HUSSEIN SHARIF ZEIN. "HIGHLY EFFICIENT HYBRID SUPERCAPACITOR MATERIAL FROM NICKEL-MANGANESE OXIDES/MWCNTs/PEDOT NANOCOMPOSITE." Nano 05, no. 03 (June 2010): 143–48. http://dx.doi.org/10.1142/s1793292010002049.

Повний текст джерела
Анотація:
A novel ternary nanocomposite of nickel-manganese oxides/multi-walled carbon nanotubes (NMO/MWCNTs) coated with poly (3,4-ethylenedioxythiophene)(PEDOT) was prepared by chemical oxidation method. The filling of NMO particles inside MWCNTs and the uniform coating of NMO/MWCNTs with PEDOT intensified the capacitive behavior of MWCNTs. The lowest IR drop (0.1 V) and highest specific capacitance (SC) values of 526.55 F/g of NMO/MWCNTs/PEDOT imply it as highly efficient hybrid supercapacitor materials in 6 M KOH electrolyte.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Khan, Salma, and A. K. Narula. "Synthesis of a bimetallic conducting nano-hybrid composite of Au–Pt@PEDOT exhibiting fluorescence." New Journal of Chemistry 42, no. 4 (2018): 2537–44. http://dx.doi.org/10.1039/c7nj04298a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Selvaganesh, S. Vinod, J. Mathiyarasu, K. L. N. Phani, and V. Yegnaraman. "Chemical Synthesis of PEDOT–Au Nanocomposite." Nanoscale Research Letters 2, no. 11 (October 25, 2007): 546–49. http://dx.doi.org/10.1007/s11671-007-9100-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sheng, Ge, Guiyun Xu, Shenghao Xu, Shiying Wang, and Xiliang Luo. "Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties." RSC Advances 5, no. 27 (2015): 20741–46. http://dx.doi.org/10.1039/c4ra15755a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SONG, DANDAN, MEICHENG LI, FAN BAI, YINGFENG LI, YONGJIAN JIANG, and BING JIANG. "SILICON NANOPARTICLES/PEDOT–PSS NANOCOMPOSITE AS AN EFFICIENT COUNTER ELECTRODE FOR DYE-SENSITIZED SOLAR CELLS." Functional Materials Letters 06, no. 04 (August 2013): 1350048. http://dx.doi.org/10.1142/s1793604713500483.

Повний текст джерела
Анотація:
A novel inorganic/organic nanocomposite film composed of Si nanoparticles (NPs) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT–PSS) is obtained from a simple mechanical mixture of Si NPs powder and aqueous PEDOT–PSS solution. Employing this composite film as a counter electrode, dye-sensitized solar cell (DSSC) exhibits an efficiency of 5.7% and a fill factor of 0.51, which are much higher than these of DSSC using pristine PEDOT–PSS electrode (2.9% and 0.25, respectively). The improvements in the photovoltaic performance of the former are primarily derived from improved electrocatalytic performance of the electrode, as evidenced by electrochemical measurements, the composite electrode has lower impedance and higher electrocatalytic activity when in comparison with pristine PEDOT–PSS electrode. These improvements are primarily deriving from the increased electrochemical surface by the addition of Si NPs. The characteristics of Si NPs/PEDOT–PSS composite counter electrode reveal its potential for the use of low-cost and stable Pt-free counter electrode materials. In addition, the results achieved in this work also provide a facile and efficient approach to improve the photovoltaic performance of DSSCs using PEDOT–PSS electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dehsari, Hamed Sharifi, Jaber Nasrollah Gavgani, Amirhossein Hasani, Mojtaba Mahyari, Elham Khodabakhshi Shalamzari, Alireza Salehi, and Farmarz Afshar Taromi. "Copper(ii) phthalocyanine supported on a three-dimensional nitrogen-doped graphene/PEDOT-PSS nanocomposite as a highly selective and sensitive sensor for ammonia detection at room temperature." RSC Advances 5, no. 97 (2015): 79729–37. http://dx.doi.org/10.1039/c5ra13976g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "NANOCOMPOSITE AND PEDOT"

1

GALLIANI, DANIELA. "Poly(3,4-ethylendioxythiophene) based materials for thermoelectric applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199131.

Повний текст джерела
Анотація:
I polimeri intrinsecamente conduttori sono una classe di materiali con caratteristiche uniche. In quanto materiali polimerici sono leggeri e flessibili, possono essere facilmente processati e stampati. Al contempo, però, possono condurre corrente elettrica, raggiungendo anche conducibilità metalliche. Questa combinazione eccezionale ha consentito lo sviluppo di dispositivi elettronici stampati e flessibili, i quali risultano interessanti nell’ambito dei dispositivi portabili, sia integrati nel corpo umano sia indossabili. L’applicazione termoelettrica di questi polimeri conduttori ha recentemente guadagnato rilievo in campo scientifico. Un dispositivo termoelettrico (organico) può convertire il calore in energia elettrica grazie all’effetto Seebeck. Il dispositivo può così recuperare il calore di scarto dissipato in tutti i processi che coinvolgono il consumo di energia e trasformarlo in energia utilizzabile. Anche se i polimeri conduttori hanno già mostrato interessanti proprietà termoelettriche, il loro utilizzo in questo campo è ancora molto limitato per via delle basse efficienze di conversione termoelettrica raggiunte finora, che impediscono a questi materiali di essere competitivi con i più diffusi materiali inorganici per questa applicazione, ovvero i tellururi. Il design di un polimero conduttore che abbia elevate prestazioni termoelettriche parte necessariamente da una conoscenza approfondita di quali tecniche e trattamenti influenzino le proprietà finali di trasporto di carica. La complessità intrinseca di questi sistemi, tuttavia, rende spesso difficoltoso ottenere queste informazioni, impedendo la comprensione di fenomeni coinvolti. Questo progetto di dottorato ha riguardato lo studio dell’impatto di diversi parametri sulle proprietà termoelettriche dei polimeri conduttori, con lo scopo di raggiungere una comprensione approfondita di come il trasporto di carica ne venga influenzato. Nello specifico, lo studio ha riguardato il poli(3,4-etilendiossitiofene) -PEDOT-, il quale è stato studiato modificando diversi parametri a tre livelli di perturbazione del sistema. In primo luogo, un’indagine è stata svolta sul ruolo delle condizioni di polimerizzazione e su quello dei trattamenti effettuati dopo la polimerizzazione. In particolare, è stata studiata l’influenza di diverse tecniche di polimerizzazione, diversi ossidanti e diversi solventi sulla vi qualità finale del film polimerico. Inoltre, il livello di ossidazione del PEDOT è stato modificato dopo la polimerizzazione, ottenendo un’ottimizzazione dell’efficienza termoelettrica. Ad un secondo livello di perturbazione, la struttura molecolare del monomero è stata modificata per preparare un copolimero. Il copolimero includeva una porzione centrale coniugata (e quindi, conduttiva) e due porzioni laterali non coniugate (isolanti), che hanno comportato una modifica sostanziale delle proprietà di trasporto del materiale finale. I risultati ottenuti sulla nuova struttura mostrano la versatilità di questa strategia e come le proprietà di trasporto possano essere finemente modificate grazie all’introduzione di modifiche della struttura molecolare. Infine, al terzo livello, le proprietà macroscopiche del PEDOT sono state modificate grazie all’introduzione di nanostrutture di natura inorganica. Questa strategia è solitamente utilizzata per migliorare l’efficienza termoelettrica dei materiali inorganici, grazie agli effetti benefici dovuti alla nanostrutturazione. Due tipologie diverse di nanoparticelle di ossidi metallici (CuO e Mn3O4) sono state sintetizzate in diverse forme e dimensioni e introdotte nella matrice di PEDOT in diverse concentrazioni. Grazie allo studio dell’effetto dell’umidità sulle proprietà di trasporto ed allo studio sulla variazione dello stato di ossidazione è stato possibile ottenere nuove informazioni sul comportamento elettrico dei nanocompositi.
Intrinsically conductive polymers (ICPs) are a class of organic materials characterized by unique features. They are lightweight, flexible and easy to process and print, as expected from polymers, but, also, they can conduct electricity up to metallic conductivities. Such an exceptional pairing of characteristics enables the development of flexible and printed electronic devices, which are of a particularly appealing for portable electronic devices, even integrated in the human body (e.g. implantable biosensors) or worn (e.g. smartwatches). Even thermoelectric (TE) application of ICPs recently gained a lot of attention. An organic TE generator (OTEG) can convert heat into electrical energy by means of the Seebeck effect. This technology aims to recover heat produced as low-grade side-product of energy consumption and to transform it into exploitable energy. Even though ICPs showed promising TE properties, their use is still hindered by low TE efficiencies, which cannot compete with the inorganic benchmark (i.e. tellurides). The design of better ICPs for TE application must start from a deep knowledge of which techniques and treatments impact the charge transport features. The intrinsic complexity of ICP systems, however, often makes this task difficult, preventing a full comprehension of the phenomena involved. This PhD project focused on the impact of different parameters on TE properties of ICPs, aiming at the needed deeper understanding on how charge transport is affected. The specific ICP poly(3,4-ethylendioxythiophene) -PEDOT- was investigated modifying different parameters at three different levels of system perturbation. First, the role of polymerization conditions and post-polymerization treatments was studied. Different polymerization techniques, oxidants and solvents have been used for the same ICP, and the occurring changes have been investigated. Moreover, PEDOT oxidation level was tuned to optimize TE efficiency. At a second level, the monomer molecular structure was modified to prepare a PEDOT-based copolymer. The copolymer included conjugated (i.e. conductive) and not conjugated (i.e. not conductive) portions, which deeply impacted the charge transport behaviour. The results show the versatility of this strategy, still barely explored in TE field, and how final transport properties can be finely tuned by means of molecular modifications. Finally, at a third level, PEDOT macroscopic features were tuned by embedding inorganic nanostructure. Such a strategy is usually exploited to improve TE efficiency by means of nanostructuration beneficial effects already known in inorganic materials. Nanoparticles of two different metal oxides (CuO and Mn3O4) of different size and shape were dispersed in PEDOT matrix. Evaluation of humidity and oxidation level effects on charge transport features allowed to obtain novel insights into transport properties in nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shen-Ming, Chen. "Applications of nanostructured materials and biomolecules for electrocatalysis and biosensors." Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20454.

Повний текст джерела
Анотація:
Electronically conducting polymers are important materials, and composites of these materials with metal nanoparticles have also been drawn significant research attention in recent years. We prepared a highly stable Agnano-Poly (3, 4-ethylenedioxythiophene) (PEDOT) nanocomposite by one-pot synthesis method. Here, 3, 4-ethylenedioxythiophene (EDOT) is used as the reductant and polystyrene sulfonate (PSS-) as a dopant for PEDOT as well as particle stabilizer for silver nanoparticles (AgNPs). Agnano–PEDOT/PSS-nanocomposite was characterized by infrared (IR) spectroscopy, transmission electron microscopy (TEM). AgNPs are distributed uniformly around PEDOT polymer with an average particle size diameter of 10–15 nm and the nanocomposite film showed catalytic activity towards 4-nitro phenol. Some types of including Ag bimetallic nanoparticles and nanostructured materials could be directly applied for the electroanalysis and biosensing applications. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/20454
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Augusto, Tatiana. "Síntese química de poli(3,4-etilenodioxitiofeno) (PEDOT): novas arquiteturas para diferentes aplicações." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-02052013-141310/.

Повний текст джерела
Анотація:
Este trabalho apresenta estudos sobre a síntese química do PEDOT com o objetivo de desenvolver diferentes arquiteturas e propriedades para melhorar a taxa de degradabilidade deste polímero. As estratégias foram as preparações de uma blenda, um copolímero e um nanocompósito. O estudo foi iniciado pela síntese química oxidativa do PEDOT (poli (3,4- etilenodioxitiofeno)) em microestruturas utilizando condições brandas e ambientalmente amigáveis, porém o material obtido não apresentou solubilidade e boas condições de se produzir um filme. Então foi sintetizado quimicamente o PEDOT dopado com PSS (poli estireno sulfonado) (PEDOT:PSS), o mesmo foi usado para preparar blendas com o PLGA (poli (ácido láctico-co-glicólico), para melhorar sua degradabilidade. Foi possível produzir um filme fino e nanoestruturado através de deposição eletrostática camada por camada (LBL) que pode ser utilizado para modificação de eletrodos ou de suportes tridimensionais para engenharia celular. Para garantir a degradabilidade do material, foi realizada a síntese de copolímeros de PEDOT e PLLA (poli(lactídeo)) em que foi variada a proporção de PEDOT na cadeia polimérica. Os copolímeros foram caracterizados por IV, RMN, UV, análises térmicas e submetidos a testes de degradabilidade e de viabilidade celular, apresentando excelentes resultados. Foi possível a obtenção de microfibras deste material. A outra alternativa estudada foi a síntese de um nanocompósito, preparado através da síntese química do PEDOT, partindo do monômero EDOT (3,4- etilenodioxitiofeno)usando HAuCl4 como oxidante e NaPSS como dopante e dispersante. O nanocompósito obtido foi caracterizado apresentando diâmetros médio próximos de 4 nm e com uma estrutura caroço-casca, apresentando nanopartícula de ouro como caroço e o polímero PEDOT:PSS como casca. Foram obtidos filmes deste material por deposição por evaporação de solvente, LBL, utilizando como policátion o PDDA (cloreto de poli (dialil dimetil amônio)) e quitosana, e por deposição eletroforética, que apresentou excelentes propriedades eletrocrômicas como rápidos tempos de respostas com bons contrastes ópticos
This work presents studies about the chemical synthesis of PEDOT (Poly(3,4-ethylenedioxythiophene)) with the aim of preparing different architectures and properties to improvement the degradability rate of this polymer. The strategies used to achieve this pupose were the preparation of polymer blends, copolymers and nanocomposites. The study was started by the chemical synthesis of microstructures PEDOT in mild and environment friendly conditions, but the material did not show solubility which enable film formation. Then, PEDOT was synthetized by chemical synthesis doped with PSS (poly(styrene sulfonic acid)), (PEDOT:PSS) to prepare blends with PLGA (poly(lactic-co-glycolic acid)) to improve its degradability. It was possible to prepare a thin and nanostructured film, by electrostatic layer-by-layer deposition (LBL), which could be used for electrodes or scaffold surface modification. In order to ensure the material\'s degradability, PEDOT and PLLA (poly(lactide)) copolymers were prepared, changing PEDOT proportion in the polymeric structure. The copolymers were characterized by, IR, NMR, UV, thermal analysis and then degradability and cell viability tests, which shown important results. Fibers were able to be obtained with these materials. The next strategy was the preparation of a nanocomposite by one-spot chemical synthesis, initiated by the monomer EDOT (3,4- ethylenedioxythiophene) using HAuCl4 as oxidant and NaPSS as both dopant and dispersant. The nanocomposite obtained was characterized showing diameter of around 4nm and a core-shell structure, with gold nanoparticle as core and PEDOT:PSS as the shell. Films were obtained by this material by casting, by LBL, using PDDA (Poly(diallyldimethylammonium) chloride) and chitosan as polycations, and by electrophoretic deposition. The latter method shows excellent characteristics as fast response time with a good optical contrast
Стилі APA, Harvard, Vancouver, ISO та ін.
4

CHAKMA, SHIMUL. "FABRICATION AND CHARACTERIZATION OF CEO2/RGO CONDUCTING ELECTRODES." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18425.

Повний текст джерела
Анотація:
Fabrication of advanced electrode material is highly desired for novel electrochemical sensor development. In this work, cerium oxide (CeO2) nanoparticles were successfully loaded on reduced graphene oxide (RGO) by one-step hydrothermal synthesis approach, and this nanocomposite (CeO2/ rGO) was used as novel electrode material for urea detection. Herein, efforts have been made to fabricate a conducting paper based sensor comprising of CeO2/rGO nanocomposite and PEDOT: PSS. The conductivity of the PEDOT: PSS coated paper significantly increases from 6.9 x 10-5 S/cm to 1.1 x 10-4 S/cm on treatment with ethylene glycol. Further, the modification of conducting paper with synthesized CeO2/rGO nanocomposite shows better electrochemical properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gruia, Violeta-Tincuta [Verfasser], Andreas [Akademischer Betreuer] Bund, Uwe [Gutachter] Ritter, and Geta [Gutachter] Carac. "Preparation and electrochemical performance of PEDOT – AuNPs nanocomposite layers for the selective detection of neurotransmitters / Violeta-Tincuta Gruia ; Gutachter: Uwe Ritter, Geta Carac ; Betreuer: Andreas Bund." Ilmenau : TU Ilmenau, 2016. http://d-nb.info/1178174573/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mendez, James D. "Conjugated Polymer Networks and Nanocomposites." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1282841324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Saunier, Valentin. "Microélectrodes nanocomposites implantables couplant enregistrement-stimulation neuronale et détection électrochimique de neurotransmetteurs." Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30023.

Повний текст джерела
Анотація:
L'électrophysiologie est le domaine de la physiologie qui vise à enregistrer l'activité électrique des tissues biologiques. En utilisant des microélectrodes implantées dans le cerveau, l'électrophysiologie a permis de réaliser des avancées décisives dans la compréhension des mécanismes neurologiques majeurs, comme la mémoire, le langage et l'apprentissage, grâce à l'enregistrement de l'activité électrique du cerveau. Ces avancées promettaient d'aider au développement de traitements et de dispositifs thérapeutiques pour les principales maladies neurologiques comme Parkinson, Alzheimer ou l'épilepsie. Cependant, la nécessité d'obtenir des sources de signaux complémentaires aux enregistrements électrophysiologiques a récemment émergé, la recherche thérapeutique basée exclusivement sur l'utilisation de ces signaux électriques conduisant le plus souvent à des impasses. Ces signaux électriques étant portés par des molécules appelées neurotransmetteurs, leur détection en temps réel devrait être une source pertinente de signaux complémentaires à combiner aux signaux électrophysiologiques. Durant cette thèse, de nouvelles microélectrodes nano-composites à base de PEDOT et de nanofibres de carbone oxydées ont été développées pour réaliser cette combinaison. Ces électrodes présentent d'excellentes caractéristiques in-vitro pour l'électrophysiologie bidirectionnelle, avec une faible impédance et une forte capacité d'injection de charge. Ces électrodes permettent également de détecter électrochimiquement la dopamine (un neurotransmetteur clé) grâce à deux techniques complémentaires, la chronoampérométrie et la voltammétrie cyclique rapide. De plus, ces électrodes modifiées gardent un profil spatial adéquat pour s'interfacer avec une cellule unique, ce qui ajouté à leurs autres caractéristiques en font des dispositifs adéquats pour l'interfaçage neuronal multifonctionnel, ajoutant la détection de neurotransmetteurs à l'enregistrement électrique. Intégrées sur des implants flexibles, ces électrodes ont été testées in-vivo dans des tranches de cerveau de souris comme électrodes d'enregistrement et de stimulation électrique, réalisant de l'électrophysiologie bidirectionnelle. Leurs hautes performances ont permis d'enregistrer l'activité électrique du cerveau sur une plage de fréquences plus importante et avec un meilleur rapport Signal sur Bruit que celui obtenu avec des microélectrodes standard. En conclusion, les performances des microélectrodes modifiées développées durant cette thèse sont très prometteuses pour l'interfaçage neuronal multifonctionnel au niveau de la cellule unique. Elles permettent en effet le couplage d'enregistrements électrophysiologiques et de stimulation électrique in-vivo, tout en permettant la détection électrochimique de neurotransmetteurs in-vitro. Ces propriétés en font des dispositifs de pointe pour la recherche et pour des applications thérapeutiques en neuroscience faisant appel à la fois à l'enregistrement des activités électrique et neurochimique
Electrophysiology is the physiology field that aims at recording the electrical activity of biological tissues. Using microelectrodes in or on the brain, electrophysiology helped make crucial advancements in the understanding of major neurological mechanisms like memory, language, learning by recording the brain electrical signals. Through these advances, it promised and helped develop treatments and therapeutic devices to cure the major neurological diseases like Parkinson's, Alzheimer's or epilepsy. However, recently the need for other sources of information to combine with electrophysiological recordings has raised, as the research and therapeutic approaches over-relying on these recordings did mostly lead to dead-ends. As the brain electrical activity is molecularly supported by a class of molecules called neurotransmitters, their detection in real-time is proposed as a high-potential complementary brain study technique to integrate along with electrophysiological recordings during neural interfacing. During this PhD, we developed a new generation of nanocomposite microelectrodes made of both PEDOT and oxidized carbon nanofibers to meet this combined integration. These electrodes displayed a key characteristics combination in-vitro, with low impedance, high charge injection limit, making them promising candidates for bidirectional electrophysiology, while being capable to detect dopamine (one key neurotransmitter) using two complementary techniques, chronoamperometry and fast-scan cyclic voltammetry. Moreover, these electrodes keep a sufficiently low spatial profile to interface with single cells, making them promising candidates for multifunctional neural interfacing, adding neurochemical detection to electrical recordings. Integrated on flexible implants, these electrodes were first tested in-vivo in brain slices as recording and stimulating electrodes (realizing bidirectional electrophysiology). They showed high performances, being capable to record brain electrical signals on a wider frequency range than standard microelectrodes, with a higher Signal to Noise Ratio (SNR). They also allowed to electrically stimulate brain slices tissues, generating measurable outputs with low inputs compared to standard electrodes. In conclusion, the modified electrodes developed in this thesis showed promising properties for multifunctional neural interfacing at a single cell level, enabling the coupling between electrophysiological recording and electrical stimulation of tissues in-vivo, while also being capable of neurotransmitter electrodetection in-vitro. Through these properties, they constitute meaningful candidates for long-term simultaneous recording of the brain electrical and neurochemical activities for research and therapeutic applications
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mumtaz, Muhammad. "Synthesis of poly(3,4-ethylenedioxythiohene), polyaniline and their metal-composite nano-objects by dispersion polymerization." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13854/document.

Повний текст джерела
Анотація:
Dans l'objectif d'améliorer la mise en forme des polymères semi-conducteurs tels que le poly (3,4-éthylènedioxythiophène) et la polyaniline, nous avons développé leur synthèse par polymérisation en dispersion de leurs monomères respectifs en utilisant le poly(oxyde d'éthylène), le poly (vinyl alcool), le poly [(N-vinylpyrrolidone)-co-(vinyl alcool)] et le poly [(N-vinylpyrrolidone)-b-(vinyl alcool)] comme stabilisants réactifs dans des milieux dispersants aqueux. Des nano-objets de nature et de structure bien définis ont été obtenus. Afin de moduler la conductivité et les propriétés opto-électroniques de ces nano-objets, leurs composites avec des métaux tels que l'or, l'argent et le cuivre ont été préparés en utilisant les sels métalliques correspondants comme co-oxydants au cours de la polymérisation en dispersion. La morphologie des nano-objets a notamment été évaluée par Microscopie Electronique en Transmission, Microscopie Electronique à Balayage, et Microscopie à Force Atomique. Le nature cœur-écorce de ces nano-objets, le niveau de dopage et la présence de métaux dans les nano-composites ont été examinés par spectrométrie de photoélectrons induits par rayons X
With the objective to improve the processability of “stiff” semi-conducting polymers, well defined poly(3,4-ethylenedioxythiophene) and polyaniline core-shell nano-objects were synthesized by dispersion polymerization of their respective monomers using poly(ethylene oxide), poly(vinyl alcohol), poly[(N-vinylpyrrolidone)-co-(vinyl alcohol)] and poly[(N-vinylpyrrolidone)-b-(vinyl alcohol)]-based reactive stabilizers in aqueous dispersant media. In order to improve the conductivity and opto-electronic properties of these nano-objects, their composite with gold, silver and copper were prepared using the metal salts as co-oxidants during dispersion polymerization. The morphology of the nano-objects was observed by microscopy analyses such as Transmission Electron Microscopy, Scanning Electron Microscopy, and Atomic Force Microscopy. The core-shell nature of these nano-objects, doping level and the presence of metals in the nano-composites were examined by X-rays Photoelectron Spectroscopy
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Song, Cheng-Wei, and 宋政緯. "The Effect of Al Doping on the Optoelectronic Properties of ZnO/PEDOT/PSS Nanocomposite Film." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/r73ff9.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
資源工程研究所
102
In this study, transparent and conductivity nanocomposite films of Al doped ZnO nanoparticles and PEDOT/PSS in PEG300 were coated on glass substrate by using the spin coating method. The experiment was divided into two parts. First, Un-doped ZnO and Al (0.3–4.0 at.%) doped ZnO nanopowders (AZO) were prepared by the Pechini method, heat treatment at 500oC for 3 h in air, and then analyzed by SEM-EDX、TEM、XRD、Raman spectra、UV-Vis、XPS and Four point probe. The morphology and grain size were found to be controlled by heat treatment temperature and the concentrations of chelating aging, citric acid and crosslinking agents, PEG2000. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that Al ions were substituted with Zn atoms in the ZnO structure. From the XRD data, the grain size of the A(1.7 at.%)ZO nanoparticles revealed a minimum at 23 nm with optical band gap at 3.14 eV. With increasing Al dopant, the AZO nanoparticle increase their defect concentration (oxygen vacancies) resultant from Raman spectra. The electrical sheet resistance of the A(1.7 at.%)ZO reached a minimum of 5.36 x 105 Ω/sq. Second, modification of the electrical properties of PEDOT/PSS by the incorporation into it of ZnO nanoparticles which were synthesized by solution mix containing PEG300. In the nanocomposite, there is a change of chemical structure from a mixture of benzoid and quinoid to a mostly quinoid was observed. This structural changes result in an enhancement of the 2 orders of magnitude in electrical conductivity. The best A(1.7 at.%)ZO/PEDOT/PSS/PEG300 films from Hall work showed the greatest conductivity at 6.47 x10-1 S/cm with the hightest transmittance at 75%. Moreover, the films prepared from two types of commercial product and that from Pechini method ie nano composite of ZnO and PEDOT/PSS/PEG films was investigated by FTIR and Raman for comparison.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Jui-Hung. "Synthesis and Properties of Novel Inorganic/Polymer Nanocomposite Part 1 Heterocoagulation of TiO2/Poly(AA-co-MMA) Nanoparticles and Blending with PET Part 2 PEDOT Film with High Conductivity and ZnO Nanorods/PEDOT Composite Thin Film." 2008. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-0808200810485100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "NANOCOMPOSITE AND PEDOT"

1

Wang, Guang Feng, Xiao Ming Tao, Wei Chen, Rong Xin Wang, and Pu Xue. "Study of OLEDs with Nanocomposites of MWNT Modified PEDOT: PSS." In Advances in Composite Materials and Structures, 861–64. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Song, Haijun. "PEDOT-based thermoelectric nanocomposites/hybrids." In Advanced PEDOT Thermoelectric Materials, 165–98. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-821550-0.00006-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mandal, Gobind, Jayanta Bauri, Debashish Nayak, Sanjeev Kumar, Sarfaraz Ansari, and Ram Bilash Choudhary. "Synthesis, structural study and various applications of Polyaniline and its nanocomposites." In Polyaniline - From Synthesis to Practical Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002227.

Повний текст джерела
Анотація:
The long lasting intrinsic conducting polymers (ICPs) including polyaniline (PANI), polypyrole (PPy), Polyindole (PIn), Poly (methyl methacrylate) (PMMA), Polythiophene (PT), poly (3,4-ethylene dioxythiophene) (PEDOT) have been recognized for their significant benefits in optoelectronic devices. In the last few decades, polyaniline has gained recognition over metals, owing its low cost, flexibility, and high conductivity, as well as the ease with which it may be produced using chemical or electrochemical processes. Due to its high electrical conductivity, light weight, ease of fabrication, and excellent environmental stability, PANI has an extensive range of applications, including batteries, sensors, supercapacitors, waste water treatment and organic electronic devices. It also has the potential for chemical and electrochemical synthesis. Polyaniline has promising potential in many optoelectronic applications as well as in supercapacitors. In this chapter, the basic historical background, different synthesis mechanism about conducting polymer polyaniline is discussed in details. Polyaniline has great potential application such as in sensors, supercapacitor and optoelectronic devices etc. due to its ability of ease of synthesis by various methods. Polyaniline based nanocomposites with different metals, metal oxide, metal sulfides, and carbon nanomaterials, graphene, carbon nanotubes (CNTs) etc. are described in this section in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "NANOCOMPOSITE AND PEDOT"

1

Ksapabutr, B., B. Lertpanyapornchai, and M. Panapoy. "Improvement of electrical property in MWCNTs/PEDOT-pss nanocomposite films via microwave treatment." In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De, Amitabha, Asok Poddar, Pintu Sen, Ajoy Das, Amitabha Ghoshray, and Bilwadal Bandyopadhyay. "Electrical, Transport And Magnetic Properties Of PEDOT-DBSA-Fe[sub 3]O[sub 4] Nanocomposite." In MAGNETIC MATERIALS: International Conference on Magnetic Materials (ICMM-2007). AIP, 2008. http://dx.doi.org/10.1063/1.2928995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tiwari, D. C., Shailendra Kumar Dwivedi, Pukhrambam Dipak, and Tarun Chandel. "PEDOT: PSS: rGO nanocomposite as a hole transport layer (HTLs) for P3HT:PCBM based organic solar cells." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Albert, Ancy, N. Sreelekshmi, I. Jinchu, K. S. Sreelatha, and C. O. Sreekala. "Electron trapping action of functionalized carbon nanotubes and PEDOT: PSS nanocomposite in inverted perovskite solar cell." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ragupathy, P., H. N. Vasan, N. Munichandraiah, and N. Vasanthacharya. "In-situ preparation of PEDOT/V 2 O 5 nanocomposite and its synergism for enhanced capacitive behavior." In SPIE Defense, Security, and Sensing, edited by Nibir K. Dhar, Priyalal S. Wijewarnasuriya, and Achyut K. Dutta. SPIE, 2011. http://dx.doi.org/10.1117/12.887682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Ka Yeung Terence, Hani Naguib, and Keryn Lian. "Flexible Multiwall Carbon Nano-Tubes/Conductive Polymer Composite Electrode for Supercapacitor Applications." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7735.

Повний текст джерела
Анотація:
The present paper investigates three types of electrically conductive polymers (ECPs), namely polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) PEDOT composite with multi-walled carbon nanotubes (CNTs) for supercapacitor applications. Their capacitive performance has been evaluated in both three electrodes half-cell and two electrodes cell setup. The nanocomposite were fabricated by polymerizing pseudocapacitive conductive polymer onto the MWCNT surface through the in-situ chemical polymerization approach. The composites were aimed to be optimized through varying the ECPs to MWCNT ratios. Half-cell electrochemical study was conducted to determine the optimal proportion of MWCNT and ECP in this parametric study. Two electrodes cell electrochemical study unveiled the potential device’s energy storage performance. MWCNT was found to act as the framework for the polymerization of the ECP into a tubular structure. Among the three composites, Ppy/MWCNT composite showed superior supercapacitor characteristics at scan rates of up to 500mV/s.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karbovnyk, Ivan, Dmytro Chalyy, Dmytro Lukashevych, and Halyna Klym. "Electrical Properties at Low Temperatures of PEDOT-based Nanocomposites." In 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). IEEE, 2018. http://dx.doi.org/10.1109/ukrmico43733.2018.9047516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

KUKHTA, A., and P. KHANNA. "OXYGEN SENSING OF NANOCOMPOSITES CONSISTING OF PEDOT: PSS AND FUNCTIONALIZED GOLD NANOPARTICLES." In Proceedings of International Conference Nanomeeting – 2013. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814460187_0060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maksimenko, Ilja, Daniel Kilian, Christian Mehringer, Michael Voigt, Wolfgang Peukert, and Peter J. Wellmann. "Application of Printable ITO/PEDOT Nanocomposites as Transparent Electrodes in Optoelectronic Devices." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.cf3j.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії