Статті в журналах з теми "Nanoblade"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nanoblade.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nanoblade".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wu, Ting-Hsiang, Tara Teslaa, Michael A. Teitell, and Pei-Yu Chiou. "Photothermal nanoblade for patterned cell membrane cutting." Optics Express 18, no. 22 (October 19, 2010): 23153. http://dx.doi.org/10.1364/oe.18.023153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Ting-Hsiang, Yi-Chien Wu, Enrico Sagullo, Michael A. Teitell, and Pei-Yu Chiou. "Direct Nuclear Delivery of DNA by Photothermal Nanoblade." Journal of Laboratory Automation 20, no. 6 (December 2015): 659–62. http://dx.doi.org/10.1177/2211068215583630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Ting-Hsiang, Tara Teslaa, Sheraz Kalim, Christopher T. French, Shahriar Moghadam, Randolph Wall, Jeffery F. Miller, Owen N. Witte, Michael A. Teitell, and Pei-Yu Chiou. "Photothermal Nanoblade for Large Cargo Delivery into Mammalian Cells." Analytical Chemistry 83, no. 4 (February 15, 2011): 1321–27. http://dx.doi.org/10.1021/ac102532w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

He, Yuping, and Yiping Zhao. "Improved hydrogen storage properties of a V decorated Mg nanoblade array." Phys. Chem. Chem. Phys. 11, no. 2 (2009): 255–58. http://dx.doi.org/10.1039/b815924f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

French, C. T., I. J. Toesca, T. H. Wu, T. Teslaa, S. M. Beaty, W. Wong, M. Liu, et al. "Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade." Proceedings of the National Academy of Sciences 108, no. 29 (July 5, 2011): 12095–100. http://dx.doi.org/10.1073/pnas.1107183108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Ting-Hsiang, Enrico Sagullo, Dana Case, Xin Zheng, Yanjing Li, Jason S. Hong, Tara TeSlaa, et al. "Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells." Cell Metabolism 23, no. 5 (May 2016): 921–29. http://dx.doi.org/10.1016/j.cmet.2016.04.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Suh, Hyo-Won, Gil-Young Kim, Yeon-Sik Jung, Won-Kook Choi, and Dongjin Byun. "Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis." Journal of Applied Physics 97, no. 4 (February 15, 2005): 044305. http://dx.doi.org/10.1063/1.1849825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

He, Yuping, Yiping Zhao, Liwei Huang, Howard Wang, and Russell J. Composto. "Hydrogenation of Mg film and Mg nanoblade array on Ti coated Si substrates." Applied Physics Letters 93, no. 16 (October 20, 2008): 163114. http://dx.doi.org/10.1063/1.3003880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Patananan, Alexander N., Ting-Hsiang Wu, Enrico Sagullo, Dana Case, Xin Zheng, Yanjing Li, Jason S. Hong, et al. "Mitochondrial Transfer by Photothermal Nanoblade Restores Respiration in Mammalian Cells with Dysfunctional Mitochondria." Biophysical Journal 110, no. 3 (February 2016): 471a—472a. http://dx.doi.org/10.1016/j.bpj.2015.11.2523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Jianmin, Tara Teslaa, Ting-Hsiang Wu, Pei-Yu Chiou, Michael A. Teitell, and Shimon Weiss. "Nanoblade Delivery and Incorporation of Quantum Dot Conjugates into Tubulin Networks in Live Cells." Nano Letters 12, no. 11 (November 5, 2012): 5669–72. http://dx.doi.org/10.1021/nl302821g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mann, Joshua, and James Rosenzweig. "A Thermodynamic Comparison of Nanotip and Nanoblade Geometries for Ultrafast Laser Field Emission via the Finite Element Method." Physics 6, no. 1 (December 19, 2023): 1–12. http://dx.doi.org/10.3390/physics6010001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Strong laser field emission from metals is a growing area of study, owing to its applications in high-brightness cathodes and potentially as a high harmonic generation source. Nanopatterned plasmonic cathodes localize and enhance incident laser fields, reducing the spot size and increasing the current density. Experiments have demonstrated that the nanoblade structure outperforms nanotips in the peak fields achieved before damage is inflicted. With more intense surface fields come brighter emissions, and thus investigating the thermomechanical properties of these structures is crucial in their characterization. We study, using the finite element method, the electron and lattice temperatures for varying geometries, as well as the opening angles, peak surface fields, and apex radii of curvature. While we underestimate the energy deposited into the lattice here, a comparison of the geometries is still helpful for understanding why one structure performs better than the other. We find that the opening angle—not the structure dimensionality—is what primarily determines the thermal performance of these structures.
12

Malina, Tomáš, Adéla Lamaczová, Eliška Maršálková, Radek Zbořil, and Blahoslav Maršálek. "Graphene oxide interaction with Lemna minor: Root barrier strong enough to prevent nanoblade-morphology-induced toxicity." Chemosphere 291 (March 2022): 132739. http://dx.doi.org/10.1016/j.chemosphere.2021.132739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Malina, Tomáš, Eliška Maršálková, Kateřina Holá, Jiří Tuček, Magdalena Scheibe, Radek Zbořil, and Blahoslav Maršálek. "Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism." Carbon 155 (December 2019): 386–96. http://dx.doi.org/10.1016/j.carbon.2019.08.086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

He, Yuping, and Yiping Zhao. "Hydrogen storage and cycling properties of a vanadium decorated Mg nanoblade array on a Ti coated Si substrate." Nanotechnology 20, no. 20 (April 23, 2009): 204008. http://dx.doi.org/10.1088/0957-4484/20/20/204008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

He, Y. P., and Y. P. Zhao. "The role of Mg2Si formation in the hydrogenation of Mg film and Mg nanoblade array on Si substrates." Journal of Alloys and Compounds 482, no. 1-2 (August 2009): 173–86. http://dx.doi.org/10.1016/j.jallcom.2009.03.153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zheng, Jie, Rong Yang, Yu Lou, Wei Li, and Xingguo Li. "Low temperature growth of nanoblade In2O3 thin films by plasma enhanced chemical vapor deposition: Morphology control and lithium storage properties." Thin Solid Films 521 (October 2012): 137–40. http://dx.doi.org/10.1016/j.tsf.2012.02.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gao, Kai, Yao Wang, Zhiwei Wang, Zhaohua Zhu, Jialiang Wang, Zhimin Luo, Cong Zhang, Xiao Huang, Hua Zhang, and Wei Huang. "Ru nanodendrites composed of ultrathin fcc/hcp nanoblades for the hydrogen evolution reaction in alkaline solutions." Chemical Communications 54, no. 36 (2018): 4613–16. http://dx.doi.org/10.1039/c8cc01343h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Perkowitz, Sidney. "Paint it nanoblack." Physics World 29, no. 8 (August 2016): 48. http://dx.doi.org/10.1088/2058-7058/29/8/42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Velasco-Ortega, Eugenio, Iván Ortiz-Garcia, Alvaro Jiménez-Guerra, Enrique Núñez-Márquez, Jesús Moreno-Muñoz, José Luis Rondón-Romero, Daniel Cabanillas-Balsera, Javier Gil, Fernando Muñoz-Guzón, and Loreto Monsalve-Guil. "Osseointegration of Sandblasted and Acid-Etched Implant Surfaces. A Histological and Histomorphometric Study in the Rabbit." International Journal of Molecular Sciences 22, no. 16 (August 7, 2021): 8507. http://dx.doi.org/10.3390/ijms22168507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Titanium surface is an important factor in achieving osseointegration during the early wound healing of dental implants in alveolar bone. The purpose of this study was to evaluate sandblasted-etched surface implants to investigate the osseointegration. In the present study, we used two different types of sandblasted-etched surface implants, an SLA™ surface and a Nanoblast Plus™ surface. Roughness and chemical composition were evaluated by a white light interferometer microscope and X-ray photoelectron spectroscopy, respectively. The SLA™ surface exhibited the higher values (Ra 3.05 μm) of rugosity compared to the Nanoblast Plus™ surface (Ra 1.78 μm). Both types of implants were inserted in the femoral condyles of ten New Zealand white rabbits. After 12 weeks, histological and histomorphometric analysis was performed. All the implants were osseointegrated and no signs of infection were observed. Histomorphometric analysis revealed that the bone–implant contact % (BIC) ratio was similar around the SLA™ implants (63.74 ± 13.61) than around the Nanoblast Plus™ implants (62.83 ± 9.91). Both implant surfaces demonstrated a favorable bone response, confirming the relevance of the sandblasted-etched surface on implant osseointegration.
20

Wang, Chao, Yiqian Wang, Xuehua Liu, Huaiwen Yang, Jirong Sun, Lu Yuan, Guangwen Zhou та Federico Rosei. "Structure versus properties inα-Fe2O3nanowires and nanoblades". Nanotechnology 27, № 3 (4 грудня 2015): 035702. http://dx.doi.org/10.1088/0957-4484/27/3/035702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zhu, Wenhui, Jonathan P. Winterstein, Renu Sharma та Guangwen Zhou. "Initial stages of Reduction of α-Fe2O3 Nanoblades". Microscopy and Microanalysis 22, S3 (липень 2016): 792–93. http://dx.doi.org/10.1017/s1431927616004815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Her, Yung-Chiun, Jer-Yau Wu, Yan-Ru Lin, and Song-Yeu Tsai. "Low-temperature growth and blue luminescence of SnO2 nanoblades." Applied Physics Letters 89, no. 4 (July 24, 2006): 043115. http://dx.doi.org/10.1063/1.2235925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Mann, Joshua, Gerard Lawler, and James Rosenzweig. "1D Quantum Simulations of Electron Rescattering with Metallic Nanoblades." Instruments 3, no. 4 (November 5, 2019): 59. http://dx.doi.org/10.3390/instruments3040059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Electron rescattering has been well studied and simulated for cases with ponderomotive energies of the quasi-free electrons, derived from laser–gas and laser–surface interactions, lower than 50 eV. However, with advents in longer wavelengths and laser field enhancement metallic surfaces, previous simulations no longer suffice to describe more recent strong field and high yield experiments. We present a brief introduction to and some of the theoretical and empirical background of electron rescattering emissions from a metal. We set upon using the Jellium potential with a shielded atomic surface potential to model the metal. We then explore how the electron energy spectra are obtained in the quantum simulation, which is performed using a custom computationally intensive time-dependent Schrödinger equation solver via the Crank–Nicolson method. Finally, we discuss the results of the simulation and examine the effects of the incident laser’s wavelength, peak electric field strength, and field penetration on electron spectra and yields. Future simulations will investigate a more accurate density functional theory metallic model with a system of several non-interacting electrons. Eventually, we will move to a full time-dependent density functional theory approach.
24

Wang, Yiqian, Chao Wang, Lu Yuan, Rongsheng Cai, Xuehua Liu, Chunyan Li та Guangwen Zhou. "Coincidence-Site-Lattice Twist Boundaries in Bicrystalline α-Fe2O3 Nanoblades". Journal of Physical Chemistry C 118, № 11 (11 березня 2014): 5796–801. http://dx.doi.org/10.1021/jp410798p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Tang, F., T. Parker, H. F. Li, G. C. Wang, and T. M. Lu. "Unusual Magnesium Crystalline Nanoblades Grown by Oblique Angle Vapor Deposition." Journal of Nanoscience and Nanotechnology 7, no. 9 (September 1, 2007): 3239–44. http://dx.doi.org/10.1166/jnn.2007.665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Chinnasamy, C. N., J. Y. Huang, L. H. Lewis, B. Latha, C. Vittoria, and V. G. Harris. "Direct chemical synthesis of high coercivity air-stable SmCo nanoblades." Applied Physics Letters 93, no. 3 (July 21, 2008): 032505. http://dx.doi.org/10.1063/1.2963034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Bhanjana, Gaurav, Neeraj Dilbaghi, Nitin Kumar Singhal, Ki-Hyun Kim, and Sandeep Kumar. "Copper oxide nanoblades as novel adsorbent material for cadmium removal." Ceramics International 43, no. 8 (June 2017): 6075–81. http://dx.doi.org/10.1016/j.ceramint.2017.01.152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lalwani, Shubra, Mehak Munjal, Gurmeet Singh, and Raj Kishore Sharma. "Layered nanoblades of iron cobaltite for high performance asymmetric supercapacitors." Applied Surface Science 476 (May 2019): 1025–34. http://dx.doi.org/10.1016/j.apsusc.2019.01.184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Liu, Y., L. Chen, T. M. Lu, and G. C. Wang. "Low-temperature cycling of hydrogenation-dehydrogenation of Pd-decorated Mg nanoblades." International Journal of Hydrogen Energy 36, no. 18 (September 2011): 11752–59. http://dx.doi.org/10.1016/j.ijhydene.2011.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Yang, B., Y. P. He, and Y. P. Zhao. "Hydrogenation of magnesium nanoblades: The effect of concentration dependent hydrogen diffusion." Applied Physics Letters 98, no. 8 (February 21, 2011): 081905. http://dx.doi.org/10.1063/1.3557056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

McGlynn, E., B. Twamley, K. K. Nanda, J. Grabowska, R. T. Rajendra Kumar, S. B. Newcomb, J. P. Mosnier, and M. O. Henry. "Observation of epitaxially ordered twinned zinc aluminate “nanoblades” on c-sapphire." Journal of Materials Science: Materials in Electronics 23, no. 3 (August 12, 2011): 758–65. http://dx.doi.org/10.1007/s10854-011-0486-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Xie, Yuan, Yuanhua He, Xiantao Chen, Daqin Bu, Xiaolong He, Maoyong Zhi, and Mingwu Wang. "Relationship between mechano-bactericidal activity and nanoblades density on chemically strengthened glass." Nanotechnology Reviews 11, no. 1 (December 13, 2021): 138–46. http://dx.doi.org/10.1515/ntrev-2022-0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Establishing the correlation between the topography and the bactericidal performance is the key to improve the mechano-bactericidal activity. However, due to the complexity of the mechano-bactericidal mechanism, the correlation between density and bactericidal performance is still not clear. Based on this, a series of nanoblades (NBs) with various density but similar thickness and height were prepared on the chemically strengthened glass (CSG) substrate by a simple alkaline etching method. The mechano-bactericidal properties of NBs on CSG (NBs@CSG) surfaces exposed to Escherichia coli were evaluated. The results show that with the NB density increasing, the mechano-bactericidal performance of the surface increased first and then decreased. Besides, the bactericidal performance of NBs@CSG is not affected after four consecutive ultrasonic cleaning bactericidal experiments. This article can provide guidance for the design of the new generation of mechano-bactericidal surfaces. In addition, this technology is expected to be applied to the civil aviation cabin window lining.
33

Chen, Lin, Bin Liao, Jie Wu, Jingjing Yu, Wenbin Xue, Xu Zhang та Guangyu He. "Influence of ion implantation on growth mechanism of α-Fe2O3 nanowires/nanoblades". Materials Chemistry and Physics 231 (червень 2019): 196–202. http://dx.doi.org/10.1016/j.matchemphys.2019.04.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lin, Nicholas, Paula Berton, Christopher Moraes, Robin D. Rogers, and Nathalie Tufenkji. "Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them." Advances in Colloid and Interface Science 252 (February 2018): 55–68. http://dx.doi.org/10.1016/j.cis.2017.12.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Aquino, Christian Laurence E., Mikko James C. Bongar, Anfernee B. Silvestre та Mary Donnabelle L. Balela. "Synthesis of Hematite (α-Fe2O3) Nanostructures by Thermal Oxidation of Iron Sheet for Cr (VI) Adsorption". Key Engineering Materials 775 (серпень 2018): 395–401. http://dx.doi.org/10.4028/www.scientific.net/kem.775.395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, hematite (α-Fe2O3) nanostructures were synthesized via thermal oxidation of Fe sheet in dry air and in water vapor. SEM images show nanoblades and nanowires growing on the surface of the sheet. Samples synthesized in water vapor generally produced larger nanostructures while samples oxidized in higher temperatures formed taller and slender nanostructures. The α-Fe2O3nanostructures were used as adsorbent for Cr (VI) in acidic medium. Chromium removal was highest with the samples synthesized at 650°C in water vapor with 95% efficiency. Kinetic and thermodynamic studies revealed that the adsorption process strongly followed pseudo-second order kinetics model and is endothermic. The process also follows the Langmuir adsorption isotherm model, suggesting that the process is described by homogeneous, monolayer adsorption. Adsorption of Cr (VI) onto hematite may be attributed to the electrostatic reaction between the positively charged hematite adsorbent and negative chromium ion.
36

Borodianska, H., O. Vasylkiv, and Y. Sakka. "Nanoblast synthesis and SPS of nanostructured oxides for SOFC." Journal of Electroceramics 22, no. 1-3 (December 18, 2007): 47–54. http://dx.doi.org/10.1007/s10832-007-9381-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Akbari Edgahi, Mohammadmahdi, Seyed Morteza Naghib, Amirhossein Emamian, Hosseinali Ramezanpour, Fatemeh Haghiralsadat, and Davood Tofighi. "A practical review over surface modification, nanopatterns, emerging materials, drug delivery systems, and their biophysiochemical properties for dental implants: Recent progresses and advances." Nanotechnology Reviews 11, no. 1 (January 1, 2022): 637–79. http://dx.doi.org/10.1515/ntrev-2022-0037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this paper, we reviewed the recent advances in nanoscale modifications and evaluated their potential for dental implant applications. Surfaces at the nanoscale provide remarkable features that can be exploited to enhance biological activities. Herein, titanium and its alloys are considered as the main materials due to their background as Ti-based implants, which have been yielding satisfactory results over long-term periods. At first, we discussed the survivability and the general parameters that have high impacts on implant failure and the necessities of nanoscale modification. Afterward, fabrication techniques that can generate nanostructures on the endosseous implant body are categorized as mechanical, chemical, and physical methods. These techniques are followed by biomimetic nanotopographies (e.g., nanopillars, nanoblades, etc.) and their biological mechanisms. Alongside the nanopatterns, the applications of nanoparticles (NPs) including metals, ceramics, polymers, etc., as biofunctional coating or delivery systems are fully explained. Finally, the biophysiochemical impacts of these modifications are discussed as essential parameters for a dental implant to provide satisfactory information for future endeavors.
38

Mateo, Jan Rommel C., Annalou L. Salut, and Menandro C. Marquez. "Surfactant Assisted Sol-Gel Synthesis of Nickel Oxide Nanostructures." Materials Science Forum 916 (March 2018): 74–78. http://dx.doi.org/10.4028/www.scientific.net/msf.916.74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper aims to find various ways to maximize the potential of nickel oxide (NiO) nanostructures which is produced via simple route method. The morphology of the NiO nanostructures was modified by adding surfactants such as Tween 80, SDS and CTAB. The effect on the morphology and optical property of the type and amount of the surfactant used were determined. The synthesized nanostructures were compared in terms of its shape, uniformity and size. SEM images revealed that the morphologies were altered by simply adding and adjusting the amount of surfactant such as CTAB, Tween 80 and SDS on to the solution. Nanocubic, nanospheres and nanoblades were produced using CTAB, Tween 80 and SDS respectively. XRD confirmed the presence of oxide and hdroxides of nickel on the produced product. The effects on the morphology of the NiO upon adding surfactant could give a good impact in different applications such as electrode, catalysts and gas sensors.
39

Hlaing Oo, W. M., M. D. McCluskey, Y. P. He, and Y. P. Zhao. "Strong Fano resonance of oxygen-hydrogen bonds on oblique angle deposited Mg nanoblades." Applied Physics Letters 92, no. 18 (May 5, 2008): 183112. http://dx.doi.org/10.1063/1.2920442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Huang, Wenting, Vesna Srot, Julia Wagner та Gunther Richter. "Fabrication of α-FeSi2 nanowhiskers and nanoblades via electron beam physical vapor deposition". Materials & Design 182 (листопад 2019): 108098. http://dx.doi.org/10.1016/j.matdes.2019.108098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yang, Bo, Yuping He, and Yiping Zhao. "Concentration-dependent hydrogen diffusion in hydrogenation and dehydrogenation of vanadium-coated magnesium nanoblades." International Journal of Hydrogen Energy 36, no. 24 (December 2011): 15642–51. http://dx.doi.org/10.1016/j.ijhydene.2011.09.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Yang, R., J. Zheng, J. Huang, X. Z. Zhang, J. L. Qu, and X. G. Li. "Low-temperature growth of vertically aligned In2O3 nanoblades with improved lithium storage properties." Electrochemistry Communications 12, no. 6 (June 2010): 784–87. http://dx.doi.org/10.1016/j.elecom.2010.03.033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Jafari, Mahsa, and S. A. Hassanzadeh-Tabrizi. "Preparation of CoAl2O4 nanoblue pigment via polyacrylamide gel method." Powder Technology 266 (November 2014): 236–39. http://dx.doi.org/10.1016/j.powtec.2014.06.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Noby, Sohaila Z., Azhar Fakharuddin, Stefan Schupp, Muhammad Sultan, Marina Krumova, Malte Drescher, Mykhailo Azarkh, Klaus Boldt та Lukas Schmidt-Mende. "Oxygen vacancies in oxidized and reduced vertically aligned α-MoO3 nanoblades". Materials Advances 3, № 8 (2022): 3571–81. http://dx.doi.org/10.1039/d1ma00678a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Oxidation states of MoO3 alter the electronic properties by several orders of magnitude. Oxygen vacancy-mediated intrinsic defects in vertically aligned α-MoO3 crystals are systematically tuned and their impact on optoelectronic properties analyzed.
45

Xie, Yuan, Jinyang Li, Daqin Bu, Xuedong Xie, Xiaolong He, Li Wang, and Zuowan Zhou. "Nepenthes-inspired multifunctional nanoblades with mechanical bactericidal, self-cleaning and insect anti-adhesive characteristics." RSC Advances 9, no. 48 (2019): 27904–10. http://dx.doi.org/10.1039/c9ra05198h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Inspired by the slippery zone of Nepenthes, we fabricated a multifunctional blade like nanostructured surface with the same mechanical bactericidal, self-cleaning and insect anti-adhesive characteristics.
46

Tang, F., T. Parker, H.-F. Li, G.-C. Wang, and T.-M. Lu. "The Pd catalyst effect on low temperature hydrogen desorption from hydrided ultrathin Mg nanoblades." Nanotechnology 19, no. 46 (October 22, 2008): 465706. http://dx.doi.org/10.1088/0957-4484/19/46/465706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chinnasamy, C. N., J. Y. Huang, L. H. Lewis, C. Vittoria, and V. G. Harris. "Erratum: “Direct chemical synthesis of high coercivity SmCo nanoblades” [Appl. Phys. Lett. 93, 032505 (2008)]." Applied Physics Letters 97, no. 5 (August 2, 2010): 059901. http://dx.doi.org/10.1063/1.3456727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Borodianska, H., O. Vasylkiv, and Y. Sakka. "Nanoreactor Engineering and Spark Plasma Sintering of Gd20Ce80O1.90 Nanopowders." Journal of Nanoscience and Nanotechnology 8, no. 6 (June 1, 2008): 3077–84. http://dx.doi.org/10.1166/jnn.2008.087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The concept of the in situ engineering of nanoreactors – morphologically homogeneous aggregates of synthesized complex intermediate metastable products has been realized. The nanoblast calcination technique was applied and the final composition was synthesized within the preliminary localized volumes of each single nanoreactor. Such technique provided the heredity of the final structure of nanosize product, and allowed the prevention of the uncontrolled agglomeration and production of Gd20Ce80O1.90 powder consisting of ∼50 nm nano-aggregates of ∼7 nm crystallites with a remarkably homogeneous composition and uniform morphology. Finally, the SPS consolidation of nanosized aggregates of Gd20Ce80O1.90 was analyzed. The CGO nanoceramics with average grain sizes of 32 nm and 16 nm were obtained by low-temperature SPS at 1050 °C and 970 °C, respectively under the pressures of 90–150 MPa.
49

Roper, Christopher S., Albert Gutés, Carlo Carraro, Roger T. Howe, and Roya Maboudian. "Single crystal silicon nanopillars, nanoneedles and nanoblades with precise positioning for massively parallel nanoscale device integration." Nanotechnology 23, no. 22 (May 10, 2012): 225303. http://dx.doi.org/10.1088/0957-4484/23/22/225303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Khare, Chinmay, Aliaksandr Stepanovich, Pio John S. Buenconsejo, and Alfred Ludwig. "Synthesis of WO3 nanoblades by the dealloying of glancing angle deposited W-Fe nanocolumnar thin films." Nanotechnology 25, no. 20 (April 30, 2014): 205606. http://dx.doi.org/10.1088/0957-4484/25/20/205606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії