Добірка наукової літератури з теми "Nano/Micro integration"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nano/Micro integration".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nano/Micro integration"

1

Gheorghe, Ion Gheorghe, Liliana Laura Badita, Adriana Cirstoiu, Simona Istriteanu, Veronica Despa, and Stergios Ganatsios. ""Mechatronics Galaxy" a New Concept for Developing Education in Engineering." Applied Mechanics and Materials 371 (August 2013): 754–58. http://dx.doi.org/10.4028/www.scientific.net/amm.371.754.

Повний текст джерела
Анотація:
This paper initiates the launch and the integration of a new scientific concept: "Mechatronics Galaxy", a support of industrial research for European sustainable and strategic development. This new concept is based on achievement and development of evolutionary and integrative-synergistic concepts regarding micro-nanomechatronics engineering, micro-nanoelectronics engineering and micro-nanoIT engineering for: spatial, temporal and functional integration;intelligent adaptive behaviour based on perception, self-learning, self-diagnostics and systemic reconfiguration; adequate flexibility of software and hardware structures; predictive development of micro-nano-mechatronics structures and of the intelligent computerized applicability with high added value; simultaneous mix-integrative design of micro-nano-products, micro-nano-systems and micro-nano-technologies; a strategy of technological impact in economy, industry, society and education. Thus, the new concept "Mechatronics Galaxy" creates and develops micro-nano-mechatronics engineering, based on fundamental and applied techniques: micro-nano-mechatronics, micro-nano-robotics, micro-nano-integronics, micro-nano-sensoristics, micro-nano-actuators, micro-nano-processing and intelligent micro-nano-manufacturing.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ogawa, T., L. Saruwatari, K. Takeuchi, H. Aita, and N. Ohno. "Ti Nano-nodular Structuring for Bone Integration and Regeneration." Journal of Dental Research 87, no. 8 (August 2008): 751–56. http://dx.doi.org/10.1177/154405910808700809.

Повний текст джерела
Анотація:
Nanostructuring technology has been proven to create unique biological properties in various biomaterials. Here we present a discovered phenomenon of titanium nano-nodular self-assembly that occurs during physical vapor depositions of titanium (Ti) onto specifically conditioned micro-textured titanium surfaces, and test a hypothesis that the Ti nanostructure has the potential to enhance bone-titanium integration. The nanostructure creation effectively provided geometrical undercut and increased the surface area by up to 40% compared with the acid-etched surface with microtopography. Depending on the size control, the nano-nodules can be added without smearing the existing micro-texture, creating a nano-micro-hybrid architecture. Titanium implants with 560-nm nano-nodules produced 3.1 times greater strength of osseointegration than those with an acid-etched surface in a rat femur model. The discovered titanium nano-nodular self-structuring has been proven feasible on biocompatible materials other than titanium, offering new avenues for the development of implant surfaces and other implantable materials for better bone-generative and -regenerative potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Jin. "Micro-/Nano-Fiber Sensors and Optical Integration Devices." Sensors 22, no. 19 (October 10, 2022): 7673. http://dx.doi.org/10.3390/s22197673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

YOKOKAWA, Ryuji. "W221002 Integration of Micro/Nano Fabrications and Biophysics." Proceedings of Mechanical Engineering Congress, Japan 2015 (2015): _W221002–1—_W221002–2. http://dx.doi.org/10.1299/jsmemecj.2015._w221002-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, G. P., and Mark Bachman. "Materials for Devices in Life Science Applications." Solid State Phenomena 124-126 (June 2007): 1157–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1157.

Повний текст джерела
Анотація:
The unprecedented technology advancements in miniaturizing integrated circuits, and the resulting plethora of sophisticated, low cost electronic devices demonstrate the impact that micro/nano scale engineering can have when applied only to the area of electrical and computer engineering. Current research efforts in micro/nano fabrication technology for implementing integrated devices hope to yield similar revolutions in life science fields. The integrated life chip technology requires the integration of multiple materials, phenomena, technologies, and functions at micro/nano scales. By cross linking the individual engineering fields through micro/nano technology, various miniaturized life chips will have future impacts in the application markets such as medicine and healthcare.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, G. P., and Mark Bachman. "Materials for Devices Applications in Life Sciences." Materials Science Forum 510-511 (March 2006): 1066–69. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.1066.

Повний текст джерела
Анотація:
The unprecedented technology advancements in miniaturizing integrated circuits, and the resulting plethora of sophisticated, low cost electronic devices demonstrate the impact that micro/nano scale engineering can have when applied only to the area of electrical and computer engineering. Current research efforts in micro/nano fabrication technology for implementing integrated devices hope to yield similar revolutions in life science fields. The integrated life chip technology requires the integration of multiple materials, phenomena, technologies, and functions at micro/nano scales. By cross linking the individual engineering fields through micro/nano technology, various miniaturized life chips have been developed at UCI that will have future impacts in the application markets such as medicine and healthcare.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lee, El-Hang, S. G. Lee, B. H. O, S. G. Park, M. Y. Chung, K. H. Kim, and S. H. Song. "Fabrication and integration of VLSI micro/nano-photonic circuit board." Microelectronic Engineering 83, no. 4-9 (April 2006): 1767–72. http://dx.doi.org/10.1016/j.mee.2005.12.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Song, Xue, Guang Cheng Yang, and Fu De Nie. "A Micro Fuse Realized by Integrating Al/CuO-Based Nanoenergetic Materials on a Micro Wire." Materials Science Forum 694 (July 2011): 249–55. http://dx.doi.org/10.4028/www.scientific.net/msf.694.249.

Повний текст джерела
Анотація:
Nano energetic materials (nEMs) have improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study a micro fuse developed by intergrating Al/CuO-based nanoenergetic materials on a micro wire. CuO nanowires are synthesized by thermally annealing Cu film deposited onto a micro wire. Nano-Al is integrated with the nanowires by thermal to realize an Al/CuO based nEMs. It allows batch and high level of integration and reliability. The micro fuse is tested by open-air combustion testing and characterized by scanning electron microscopy, x-ray diffraction, differential thermal analysis and differential scanning calorimetry.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pinto, Vânia, Paulo Sousa, and Graça Minas. "Special Issue on Novel Technology and Applications of Micro/Nano Devices and System." Applied Sciences 13, no. 3 (January 31, 2023): 1856. http://dx.doi.org/10.3390/app13031856.

Повний текст джерела
Анотація:
The development of novel technologies and applications for micro/nano devices is an interdisciplinary subject that demands an integration of several research fields, such as material science, biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cho, Joon Hyong, David Cayll, Dipankar Behera, and Michael Cullinan. "Towards Repeatable, Scalable Graphene Integrated Micro-Nano Electromechanical Systems (MEMS/NEMS)." Micromachines 13, no. 1 (December 26, 2021): 27. http://dx.doi.org/10.3390/mi13010027.

Повний текст джерела
Анотація:
The demand for graphene-based devices is rapidly growing but there are significant challenges for developing scalable and repeatable processes for the manufacturing of graphene devices. Basic research on understanding and controlling growth mechanisms have recently enabled various mass production approaches over the past decade. However, the integration of graphene with Micro-Nano Electromechanical Systems (MEMS/NEMS) has been especially challenging due to performance sensitivities of these systems to the production process. Therefore, ability to produce graphene-based devices on a large scale with high repeatability is still a major barrier to the commercialization of graphene. In this review article, we discuss the merits of integrating graphene into Micro-Nano Electromechanical Systems, current approaches for the mass production of graphene integrated devices, and propose solutions to overcome current manufacturing limits for the scalable and repeatable production of integrated graphene-based devices.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nano/Micro integration"

1

Hartmann, Daniel M. "Self-assembled pick and place methods for heterogeneous integration of micro and nano-scale structures /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2001. http://wwwlib.umi.com/cr/ucsd/fullcit?p3022234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BONANNO, ALBERTO. "Micro-for-Nano: A Low-Power Platform for Nanomaterial Integration and Nanosensors Interface on 0.13μm CMOS Technology". Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2557562.

Повний текст джерела
Анотація:
During the last years, material science has been focused on the exploration of the material characteristics at nanoscale. In fact, some materials show different properties only if they are designed with a nanometer structure. Even if they can be used to build macro devices (e.g., tactile surface, strain sensors), the nanostructured materials can reach high sensitivity or accuracy. Thin films [1], nanoparticles [2] and nanowires composites [3] have been widely used thanks to their sensitivity to mechanical strengths [4] or light stimuli [5–7]. In these cases, a large number of nanostructured elements have been merged in a single device to transduce macro-phenomena (e.g., strain, bending, pressure, temperature). Although nanomaterials can be used for standard sensor applications, the aim of nanotechnology is to exploit the dimension of the basic elements (e.g., nanoparticles) to conceive innovative applications at nanoscale. In order to exploit the ultra-small dimension of these materials, researchers addressed the development of nanodevices including only a single nanostructured element to increase sensitivity and accuracy. Nanomaterials, such as nanowires (NWs), bridging molecules or nanoparticles, are considered the basis for a new generation of bio-sensors able to interact with gases [8, 9], molecules (e.g., DNA molecules) or other bio-substances at nanoscale. Some examples are the lab-on-chip designed to implement drug detection using functionalized CNT [10] and the Electronic Nose able to identify different gas molecules [11]. The fabrication process of a nanosensor (or nanodevice) mainly consists in the integration of nanomaterials (previously synthesized for achieving the desired functionality) with metal electrodes. The fabrication process is actually complex and implies high costs. Different techniques can be used to connect nanomaterial with metal electrodes and, then, to the custom electronic interface. The most used methods for integration involve a stochastic deposition upon interdigitated electrodes [12] or chemical processes to directly grow the nanomaterials in-situ [13] or an electrically controlled deposition of nanomaterials dissolved in liquid solution [14]. The fabricated nanodevice is a passive component and it needs to be connected to a measurement system, involving long cables and therefore high parasitics. Fundamentally, when a nanomaterial is exposed to specific molecules or physical phenomena, its resistance or capacitance changes proportionally to the sensed quantity. Thus, the larger the variation of the resistance or capacitance of nanomaterials, the higher the sensitivity to specific phenomena. The electronic interface for passive nanosensors should be able to stimulate the nanomaterial and convert the large variation of its electrical characteristics to analog or digital signals compliant with commercial electronics. The nanomaterial signal is usually a current in the pA-μA range and the noise coupling, due to long interconnections, can easily affect the whole nanodevice sensitivity. Hence, a new approach for the nanosensor fabrication and for the read-out is strictly required to cut fabrication costs and improve measurement accuracy. The electronic interface needs to be placed as close as possible to avoid interferences at the interconnection cables. Anyway, the read-out system has also to overcome flicker-noise effects during DC or low-frequency measurements. In addition to the issues related to the measurement accuracy, a single nanosensor is not sufficient to produce reliable results because of the process variation in nanomaterial synthesis and nanodevice fabrication. Thus, an array of nanosensors is strongly suggested because a large number of nanodevices compensates the defects in single nanosensor fabrication. The measurement system provides the final results performing an average calculation of the nanosensor outputs. Actually, if the final aim is a complex system as the Electronic Nose [15] (i.e., an integrated multi-sensors system) or a bio-sensors for blood analysis [16], an array of nanosensors is strictly required given that different molecules have to be detected and average measurements are mandatory. This PhD thesis reports about a flexible platform implemented in CMOS technology for conceiving a Micro-for-Nano (M4N) system where nanosensors and microelectronics coexist on the same chip. The nanomaterial integration process (Chapter 2, Chapter 3), the read-out circuits for nanosensor interface (Chapter 4, Chapter 5) and the architecture to handle large number of integrated nanosensors (Chapter 6) will be described in the following chapters. The M4N project has been developed in collaboration with the Italian Institute of Tecnology (IIT@PoliTO), which has supported all the experiments needed to set-up the integration process and to characterize the designed CMOS circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Riverola, Borreguero Martín. "Micro and Nano-electro-mechanical devices in the CMOS back end and their applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/458694.

Повний текст джерела
Анотація:
Recentment, l'escalat de la tecnologia complementaria metall-òxid-semiconductor (CMOS) està arribant a límits fonamentals, principalment degut a les fuites de corrent no nul·les que el transistor presenta. És per això que s’està investigant una nova branca que va més enllà dels límits de la llei de Moore la qual s’anomena “Més que Moore” i està atraient l’interès per nous dispositius de processat de la informació i memòries, noves tecnologies per integració heterogènia de múltiples funcions, i nous paradigmes d'arquitectures de sistemes. Una d'aquestes tecnologies prometedores per processat de la informació és la tecnologia de relés micro- i nano electromecànica, perquè presenta fuites de corrent pràcticament nul·les i una commutació entre dos estats molt abrupta. Aquesta tesi proposa explorar les possibilitats d'aprofitar les capes disponibles de la tecnologia CMOS comercial AMS 0.35 µm per implementar relés micro i nano electromecànics. En concret, s’exploren dos conceptes diferents: un són relés actuats en el pla i definits usant solament la capa d’interconnexió anomenada via, i l’altre són relés actuats torsionalment i formats amb metalls i vies (sovint anomenat com compost) a la vegada que suportat per vies. Ambdós conceptes es basen en la capa de tungstè VIA3, la qual inclou característiques claus tals com gran duresa, alt punt de fusió, poc estrès, i gran resistència a l’àcid fluorhídric (HF), ja que les estructures mecàniques s'alliberen mitjançant un procés post-CMOS sense màscares basat en una solució d'HF. Gràcies a les característiques excepcionals de la plataforma de VIA3, també s’han fabricat ressonadors MEMS basats en l'esmenada plataforma, el que ha permès contribuir al disseny i la caracterització d'un oscil·lador de doble freqüència que consisteix en ressonadors torsionals de tungstè i en un amplificador de transimpedància ultra-compacte, de baix consum i amb un alt guany. Finalment i paral·lel al principal fil de la tesi, també s’han desenvolupat capacitats commutables en col·laboració amb l’empresa SilTerra Malaysia Sdn. Bhd. Aquests dispositius es caracteritzen per estar totalment integrats en el procés d'una tecnologia comercial CMOS de 180 nm de baix cost (usant la plataforma SilTerra MEMS-on-CMOS).
Recently, several new emerging devices are starting to be explored because the traditional down-scaling approach of the complementary metal-oxide-semiconductor (CMOS) technology (often called “More Moore”) is reaching fundamental limits; mainly due to non-zero transistor off-state leakage. This brand-new domain that goes beyond the boundaries of Moore’s law is commonly named ``More than Moore'' and is driving interest in new devices for information processing and memory, new technologies for heterogeneous integration of multiple functions, and new paradigms for system architecture. One of these new promising technologies for logic and information processing is the micro- and nanoelectromechanical (M/NEM) relay technology, because of its immeasurably low off-state leakage current and super-steep switching behavior. This dissertation proposes to explore the possibilities of leveraging the available layers of the commercial CMOS technology AMS 0.35 µm to implement M/NEM relays. Specifically, two different approaches are explored: in-plane actuated relays defined using solely the via layer, and torsional actuated relays formed with metal and via layers (usually named composite) while supported by vias. Both approaches are supported by the tungsten VIA3 layer, which includes key features such as high hardness, high melting point, low stress and resistance to hydrofluoric (HF) acid, since the mechanical structures are released in a maskless post-CMOS process based on a wet HF enchant. Based on the key structural features that the developed relays showed, MEMS resonators based on the VIA3 platform were also fabricated. In this dissertation, we also present a particular contribution involving the design and characterization of a dual-frequency oscillator that consist of such reliable torsional tungsten resonators and a high gain, low power and ultra-compact transimpedance amplifier (TIA). Finally and parallel to the main thread of this dissertation, RF MEMS switched capacitors are developed as a result of the collaboration with the semiconductor manufacturing enterprise SilTerra Malaysia Sdn. Bhd. These devices have the particularity of being fully integrated into the process flow of a low cost, commercial 180 nm CMOS technology (using the SilTerra MEMS-on-CMOS process platform).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kuprenaite, Sabina. "Heterogeneous integration of functional thin films for acoustic and optical devices." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD039.

Повний текст джерела
Анотація:
Le contrôle de la microstructure et de la morphologie de surface est essentiel pour que les couches minces soient appliquées dans des dispositifs optiques et acoustiques. Des couches minces de TiO2, LaNiO3 et ZnO et leurs hétérostructures ont été obtenues par des techniques de pulvérisation cathodique à radio fréquence et de dépôt chimique en phase vapeur (CVD). L'optimisation des paramètres de dépôt, tels que la température, la pression totale de la chambre, la pression partielle d'O2 et la vitesse de croissance, a conduit à une amélioration de la qualité structurelle et fonctionnels des films minces et de leurs hétérostructures. L'orientation des couches minces épitaxiales de ZnO et TiO2 a été ajustée non seulement par le lien épitaxial avec divers substrats, mais également par les conditions de dépôt. La qualité optique des films de TiO2 a été principalement optimisée par l'élimination des défauts de microstructure et l'augmentation de la non-stoechiométrie en oxygène. Il a été démontré que les défauts ponctuels et microstructuraux dans les films polycristallins et épitaxiaux jouent un rôle clé dans les pertes de propagation optique. L'effet de la polarité du substrat sur les propriétés structurelles, optiques et acoustiques des films minces à base de ZnO a également été étudié. Les couches sacrificielles et / ou d'initiation de croissance ont été identifiées pour l'intégration hétérogène de films acoustiques et optiques fonctionnels sur substrats semi-conducteurs
The control of microstructure and surface morphology is essential for the thin films to be applied in optical and acoustic devices. Thin films of TiO2, LaNiO3 and ZnO and their heterostructures in this work were obtained by radio frequency (RF) magnetron sputtering and metalorganic chemical vapor deposition (MOCVD) techniques. The optimization of deposition parameters, such as temperature, total chamber pressure, O2 partial pressure and growth rate, led to high structural quality of functional thin films and their heterostructures. The orientation of epitaxial ZnO and TiO2 thin films was tuned not only through lattice matching with various substrates, but as well through deposition conditions. The optical quality of TiO2 films was mostly optimized through elimination of microstructural defects and increasing oxygen non-stoichiometry. It was shown that microstructural and lattice defects in polycrystalline and epitaxial films played a key role in optical propagation losses. Effect of substrate polarity on the structural, optical and acoustic properties of ZnO-based thin films was studied, as well. The sacrificial and/or seed layers were identified for heterogeneous intégration of functional acoustical and optical films with semiconductor substrates
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bleiker, Simon J. "Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems." Doctoral thesis, KTH, Mikro- och nanosystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207185.

Повний текст джерела
Анотація:
Three-dimensional (3D) integration of micro- and nano-electromechanical systems (MEMS/NEMS) with integrated circuits (ICs) is an emerging technology that offers great advantages over conventional state-of-the-art microelectronics. MEMS and NEMS are most commonly employed as sensor and actuator components that enable a vast array of functionalities typically not attainable by conventional ICs. 3D integration of NEMS and ICs also contributes to more compact device footprints, improves device performance, and lowers the power consumption. Therefore, 3D integration of NEMS and ICs has been proposed as a promising solution to the end of Moore’s law, i.e. the slowing advancement of complementary metal-oxide-semiconductor (CMOS) technology.In this Ph.D. thesis, I propose a comprehensive fabrication methodology for heterogeneous 3D integration of NEM devices directly on top of CMOS circuits. In heterogeneous integration, the NEMS and CMOS components are fully or partially fabricated on separate substrates and subsequently merged into one. This enables process flexibility for the NEMS components while maintaining full compatibility with standard CMOS fabrication. The first part of this thesis presents an adhesive wafer bonding method using ultra-thin intermediate bonding layers which is utilized for merging the NEMS components with the CMOS substrate. In the second part, a novel NEM switch concept is introduced and the performance of CMOS-integrated NEM switch circuits for logic and computation applications is discussed. The third part examines two different packaging approaches for integrated MEMS and NEMS devices with either hermetic vacuum cavities or low-cost glass lids for optical applications. Finally, a novel fabrication approach for through silicon vias (TSVs) by magnetic assembly is presented, which is used to establish an electrical connection from the packaged devices to the outside world.
Tredimensionell (3D) integration av mikro- och nano-elektromekaniska system (MEMS/NEMS) med integrerade kretsar (ICs) är en ny teknik som erbjuder stora fördelar jämfört med konventionell mikroelektronik. MEMS och NEMS används oftast som sensorer och aktuatorer då de möjliggör många funktioner som inte kan uppnås med vanliga ICs.3D-integration av NEMS och ICs bidrar även till mindre dimensioner, ökade prestanda och mindre energiförbrukning av elektriska komponenter. Den nuvarande tekniken för complementary metal-oxide-semicondictor (CMOS) närmar sig de fundamentala gränserna vilket drastiskt begränsar utvecklingsmöjligheten för mikroelektronik och medför slutet på Moores lag. Därför har 3D-integration identifierats som en lovande teknik för att kunna driva vidare utvecklingen för framtidens elektriska komponenter.I denna avhandling framläggs en omfattande fabrikationsmetodik för heterogen 3D-integration av NEMS ovanpå CMOS-kretsar. Heterogen integration betyder att både NEMS- och CMOS-komponenter byggs på separata substrat för att sedan förenas på ett enda substrat. Denna teknik tillåter full processfrihet för tillverkning av NEMS-komponenter och garanterar kompatibilitet med standardiserade CMOS-fabrikationsprocesser.I den första delen av avhandlingen beskrivs en metod för att sammanfoga två halvledarskivor med en extremt tunn adhesiv polymer. Denna metod demonstreras för 3D-integration av NEMS- och CMOS-komponenter. Den andra delen introducerar ett nytt koncept för NEM-switchar och dess användning i NEM-switch-baserade mikrodatorchip. Den tredje delen presenterar två olika inkapslingsmetoder för MEMS och NEMS. Den ena metoden fokuserar på hermetisk vakuuminkapsling medan den andra metoden beskriver en lågkostnadsstrategi för inkapsling av optiska komponenter. Slutligen i den fjärde delen presenteras en ny fabrikationsteknik för så kallade ”through silicon vias” (TSVs) baserad på magnetisk självmontering av nickeltråd på mikrometerskala.

20170519

Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vella, P. C., S. S. Dimov, E. Brousseau, Cristina-Luminita Tuinea-Bobe, C. Grant, and Benjamin R. Whiteside. "A new process chain for producing bulk metallic glass replication masters with micro- and nano-scale features." The International Journal of Advanced Manufacturing Technology, 2014. http://hdl.handle.net/10454/18307.

Повний текст джерела
Анотація:
No
A novel process chain for serial production of polymer-based devices incorporating both micro- and nano-scale features is proposed. The process chain is enabled by the use of Zr-based bulk metallic glasses (BMG) to achieve the necessary level of compatibility and complementarity between its component technologies. It integrates two different technologies, namely laser ablation and focused ion beam (FIB) milling for micro-structuring and sub-micron patterning, respectively, thus to fabricate inserts incorporating different length scale functional features. Two alternative laser sources, namely nano-second (NS) and pico-second (PS) lasers, were considered as potential candidates for the first step in this master-making process chain. The capabilities of the component technologies together with some issues associated with their integration were studied. To validate the replication performance of the produced masters, a Zr-based BMG insert was used to produce a small batch of micro-fluidic devices by micro-injection moulding. Furthermore, an experimental study was also carried out to determine whether it would be possible by NS laser ablation to structure the Zr-based BMG workpieces with a high surface integrity whilst retaining the BMG’s non-crystalline morphology. Collectively, it was demonstrated that the proposed process chain could be a viable fabrication route for mass production of polymer devices incorporating different length scale features.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Djuric, Bojan. "Contribution à l'interconnexion de composants actifs intégrés dans des substrats laminés : apport des interfaces micro ou nano-structurées." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30070.

Повний текст джерела
Анотація:
Les convertisseurs de puissance occupent une place importante dans l'ingénierie des systèmes électriques. Les puissances nominales augmentent et les convertisseurs statiques doivent répondre à ces besoins notamment en termes de compacité. Cette amélioration s'explique notamment par l'utilisation de dispositifs semi-conducteurs à large bande interdite (WBG) à base de carbure de silicium (SiC) et de nitrure de gallium (GaN) qui autorisent des fréquences de découpage et une température de fonctionnement nettement plus élevées. Cependant, les temps de commutation plus courts qui en découlent ne sont exploitables que si les éléments parasites du boîtier sont réduits au minimum afin de profiter pleinement de ces nouveaux composants.Les éléments parasites, inductances en particulier, sont source de pertes qui réduisent l'efficacité et la fiabilité du convertisseur, et ce en générant du bruit par IEM (Interférences électromagnétiques). Les améliorations à apporter sont fondamentalement difficiles à obtenir avec les boîtiers d'aujourd'hui utilisant la technologie de câblage filaire comme interconnexion des composants actifs. Dans certaines applications, les dispositifs WBG peuvent fonctionner à des températures plus élevées que les composants en silicium (Si). La température maximale de jonction (Tj) des composants en SiC peut être supérieure à 200°C, alors que celle des interrupteurs en Si est d'environ 125°C. Les assemblages doivent pouvoir supporter des températures plus élevées et résister aux régimes transitoires de température qui en découlent. La technologie des PCB a l'avantage d'être un processus peu coûteux et bien maitrisé offrant la possibilité de produire des dispositifs à grande échelle, d'utiliser un pas fin, du cuivre épais pour le transport de la chaleur et du courant, des structures multicouches répétables, etc. L'intégration de puces de puissance dans les PCB a récemment suscité un grand intérêt. Plusieurs types d'interconnexion ont été proposés, sachant que l'un des plus grands avantages de la technologie d'enfouissement PCB des interrupteurs de puissance est la réduction des inductances parasites à un niveau proche du minimum théorique. La tendance est d'interconnecter les composants par micro-vias laser. Cependant, la conductivité thermique du diélectrique utilisé est inférieure à 1 W.m-1.K-1 pour le matériau polyimide, tel que le kapton, contre 170 W.m-1.K-1 pour le nitrure d'aluminium (AlN) des substrats céramique (DBC). À cela s'ajoutent des limites en termes de densité imposée par le procédé de fabrication, ce qui entraîne des limitations de courant et de flux thermique. Les commutations des composants actifs du convertisseur sont une source de variations de température du système. Un gradient de température est présent le long des interconnexions qui, combiné aux différents coefficients de dilatation thermique de chaque matériau, peut conduire à la fissure de l'interface micro- vias/puce et donc à la défaillance dans le temps. Ces mises en défaut des interconnexions attribuées aux contraintes cycliques appliquées affectent fortement la fiabilité du convertisseur. La solution proposée et développée au cours de ces travaux combine des technologies avancées des circuits imprimés et une solution d'interconnexion innovante " non rigide ", basée sur le dépôt électrolytique d'interfaces macro et nano structurées, suivi d'une thermocompression. L'ensemble peut ainsi constituer un bloc élémentaire pour la conception de convertisseurs de puissance avec un haut niveau d'intégration et de fiabilité grâce à une interconnexion entièrement en cuivre, espérée flexible, permettant un refroidissement double face. Les nano-fils utilisés comme interface thermique et électrique de la puce sont également espérés résistants aux contraintes cycliques
The power converters hold a central position in electrical engineering. The power ratings are increasing and the converters have to meet these needs in compact systems. For example, the current power density of commercialized power converters of 2 kW for photovoltaic application is around 1 kW.l-1, whereas in the "Little Box Challenge" organized by Google and IEEE reached 12 kW.l-1. This improvement is mainly explained by using wide band-gap (WBG) semiconductor devices based on silicon carbide (SiC) and gallium nitride (GaN) materials that permit significantly higher switching frequencies. However, the associated shorter switching times are only possible when all stray elements in the package are minimized in order to take all the benefit of these new components. The parasitic elements, and the package stray inductances in particular, are source of losses which reduce the efficiency and also cause less reliable operation and EMI noise. This is fundamentally difficult to achieve with the popular packages using wire-bonded interconnections. In some application, the WBG devices are expected to be able to work at higher temperature than silicon (Si) components. The junction temperature (Tj) of SiC components can be higher than 200°C in comparison of Si switches around 125°C. The package must endure high temperature and resist the ensuing large temperature transitions as well. The PCB technology has the advantage of being a cost efficient and well-established process. There is a possibility of massive parallel manufacturing, fine pitch, thick copper for heat and current transport, repeatable multilayer structures, etc. The embedding of power dies in PCB recently has solicited great interest. There are several kinds of proposed interconnections. The greatest advantage of the technology for power device packaging is the strip-line approach of distributing current, bringing down the stray inductance close to the theoretical minimum. The trend in PCB-embedding technology is to interconnect the components by using laser micro-vias. The thermal conductivity of the PCB core is less than 1 W.m-1.K-1 for the polyimide material such a kapton against 170 W.m-1.K-1 for aluminum nitride (AlN) for direct bonded copper (DBC) substrate. The micro-via approach suffers from the manufacturing limits imposed on their density, resulting in current and heat flux limitations. This variation of the conveyed power through the converter is a source of temperature variations in the power assembly. Temperature gradient is present along the interconnections which, combined with different thermal expansion coefficient of each material, leads to crack at micro-via/die interface and delaminates over time. These interconnection defects are affecting strongly the reliability of the converter, attributed to the applied cyclical stresses. The proposed solution combines advanced PCB technologies and " not rigid " innovative interconnection, based on electrolytic deposition of macro and nano structured interfaces, followed by thermo-compression. The assembly may thus be an elementary block for the design of power converters with high level of integration and reliability by means of a full copper and flexible interconnection allowing double-sided cooling. It is expected that the nano wires used as thermal and electrical die interface will be also more resistant to cyclical stresses
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coste, Marie. "Intégration hétérogène de GaAs sur Si à partir de nano-germes : étude de la nucléation et de la croissance de micro-cristaux sur substrats Si (001) et (111)." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS578/document.

Повний текст джерела
Анотація:
L’intégration du GaAs sur Si est un des défis majeurs des 40 dernières années puisqu’elle permettrait de combiner les nombreux avantages du Si, dont notamment son bas coût, avec les propriétés de haute mobilité et de gap direct du GaAs. Les cellules photovoltaïques multi-jonctions à base de matériau III-V permettent d’obtenir les plus hauts rendements de conversion photovoltaïque. Cependant, leur coût de fabrication élevé est un aspect limitatif de leur utilisation. Nous nous sommes intéressés ici à une étude préliminaire visant à réaliser leur intégration sur substrat Si. In fine, l’objectif sera la réalisation de cellules tandems GaAs/Si et GaAs/Ge sur substrat Si. L’intégration du GaAs et du Ge sur Si conduit cependant à la formation de dislocations et de fissures du fait de leurs désaccords de maille et de leurs différences de coefficient d’expansion thermique respectifs. De plus, du fait de la différence de polarité entre le GaAs et le Si, cette intégration conduit également à la formation de domaine d’anti-phase. Nous présentons dans cette étude un procédé d’intégration permettant à la fois l’élimination de ces défauts et le passage du courant entre le matériau épitaxié et le Si. Ce procédé est basé sur l’utilisation d’ouvertures de tailles nanométriques dans une silice fine, qui nous permet ainsi de réaliser la croissance du GaAs sur Si sous forme de cristaux, par épitaxie latérale à partir de nano-germes de GaAs ou de Ge. Pour ce faire, nous utilisons l’épitaxie par jet chimique sans gaz vecteur qui est une technique de croissance permettant une bonne sélectivité. La croissance sera tout d’abord étudiée dans des ouvertures aléatoires, facilement réalisées in-situ sous ultravide, puis dans des ouvertures localisées de tailles fixées. Ces dernières sont obtenues suite à une procédure longue et complexe qui repose sur des étapes de nettoyage chimique, d’enrésinement, de lithographie électronique, de développement et de gravure ionique réactive. Nous présenterons les résultats de la croissance directe de cristaux de GaAs dans les ouvertures sur Si (001) et Si (111), et également à partir de nano-germes de Ge. Ce procédé d’intégration a permis l’élimination des trois types de défauts précédemment indiqués, et nous avons obtenu de très bons résultats notamment lors de l’intégration dans les ouvertures localisées sur Si (111). Nous verrons que la morphologie des nano-germes de Ge peut toutefois être problématique lors de la reprise d’épitaxie du GaAs. La possibilité de passage du courant par effet tunnel à travers la silice fine sera ensuite vérifiée et le dopage des cristaux de GaAs avec du Si sera également présenté
GaAs on Si integration is one of the major challenges of the last 40 years as it would allow to combine Si advantages, like its low cost, with GaAs high mobility and direct bandgap. Multi-junction photovoltaic cells based on III-V materials have the highest photovoltaic conversion efficiencies. However, their high manufacturing cost is a limiting aspect of their use. This is why we have made a preliminary study aiming at realizing their integration on Si substrate. In fine, the objective will be the realization of tandem solar cells made of GaAs/Si and GaAs/Ge on Si substrate. However, GaAs and Ge integrations on Si lead to dislocations and cracks formations because of their respective differences of lattices parameters and thermal expansion coefficients. Moreover, because of the difference of polarity between GaAs and Si, this integration also leads to anti-phase domain formation. We present in this study an integration process allowing both these defects elimination and current passage between the epitaxial material and Si. This process is based on the use of nanoscale openings in a thin silica, which allows us to carry out GaAs crystals growth on Si by lateral epitaxy from GaAs or Ge nano-seeds. To do this, we use chemical beam epitaxy which is a growth technique allowing good selectivity. Firstly, the growth will be studied inside randomly dispersed openings, which are easily made in situ under ultra-high vacuum, and then inside localized openings with fixed sizes. These are obtained after a long and complex procedure including chemical cleaning, resist spin-coating, electronic lithography, development and reactive ion etching. We will present GaAs crystals direct growth inside openings on Si (001) and (111), and also from Ge nano-seeds. This integration process allowed the elimination of the three types of defects previously mentioned, and we have obtained very good results especially for the integration inside localized openings on Si (111). We will see that Ge nano-seeds morphology can however be problematic during the GaAs lateral epitaxy. In addition, the current passage by tunnel effect through the thin silica will be verified and the GaAs crystals doping with Si will also be presented
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Greiner, Felix [Verfasser], and Helmut F. [Akademischer Betreuer] Schlaak. "Mikro-Nano-Integration für metallische Mikrosysteme mit vertikal integrierten Federelementen / Felix Greiner. Betreuer: Helmut F. Schlaak." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1107772052/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cao, Hong Ha. "The fabrication process of microfluidic devices integrating microcoils for trapping magnetic nano particles for biological applications." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112150/document.

Повний текст джерела
Анотація:
Le but de cette étude est de concevoir, fabriquer et caractériser une puce microfluidique afin de mettre en oeuve la capture de nanoparticules magnétiques fonctionnalisées en vue de la reconnaissance d’anticorps spécifiques (couplage d’une très grande spécificité et sensibilité). Après avoir modélisé et simulé les performances de la microbobine intégrée dans le canal de la puce microfluidique en prenant soin de limiter la température du fluide à 37°C, la capture devant être effective, le microsystème est fabriqué en salle blanche en utilisant des procédés de fabrication collective. La fabrication du microdispositif en PDMS a aussi donné lieu à l’optimisation de procédés de modification de surface afin d’assurer la ré-utilisation du microdispositif (packaging réversible) et la limitation de l’adsorption non spécifique. L’immobilisation des anticorps su les billes (300 nm) a été menée à l’intérieur du canal en utilisant un protocole de type ELISA éprouvé. Le procédé a montré qu’il était également efficient pour cet environnement puisque nous avons pu mettre ne évidence la capture de nanoparticules
In this study, a concept of microfluidic chip with embedded planar coils is designed and fabricated for the aim of trapping effectively functionalized magnetic nanobeads and immobilizing antibody (IgG type). The planar coils as a heart of microfluidic chip is designed with criterion parameters which are optimized from simulation parameters of the maximum magnetic field, low power consumption and high power efficiency by FE method. The characterization of microcoils such as effectively nanobeads (300 nm) at low temperature (<37oC) is performed and confirmed. The channel network in PDMS material is designed for matching with entire process (including mixing and trapping beads) in microfluidic chip. A process of PDMS’s surface modification is also carried out in the assemble step of chip in order to limit the non-specific adsorption of many bio substances on PDMS surface. The microfluidic chip assemble is performed by using some developed techniques of reversible packaging PDMS microfluidic chip (such as stamping technique, using non-adhesive layer, oxygen plasma combining with solvent treatment). These packaging methods are important to reused microchip (specially the bottom substrate) in many times. The immobilization of antibody IgG-type is performed inside microfluidic chip following the standard protocol of bead-based ELISA in micro test tube. The result showed that IgG antibodies are well grafted on the surface of carboxyl-beads (comparing to result of standard protocol); these grafted antibodies are confirmed by coupling them with labeled second antibody (Fab-FITC conjugation)
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Nano/Micro integration"

1

Li, Jin, ed. Micro-/Nano-Fiber Sensors and Optical Integration Devices. MDPI, 2022. http://dx.doi.org/10.3390/books978-3-0365-5629-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Electronic and photonic packaging, Integration and packaging of micro/nano/electronic systems--2005: Presented at 2005 ASME International Mechanical Engineering Congress and Exposition : November 5-11, 2005, Orlando, Florida, USA. New York, N.Y: ASME, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Simmons, Craig A., Yu Sun, and Deok-Ho Kim. Integrative Mechanobiology: Micro- and Nano- Techniques in Cell Mechanobiology. Cambridge University Press, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Simmons, Craig A., Yu Sun, and Deok-Ho Kim. Integrative Mechanobiology: Micro- and Nano- Techniques in Cell Mechanobiology. Cambridge University Press, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Simmons, Craig A., Yu Sun, and Deok-Ho Kim. Integrative Mechanobiology: Micro- and Nano- Techniques in Cell Mechanobiology. Cambridge University Press, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ASME. ASME 2015 13th International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Volume 3: Advanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro-And Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays. American Society of Mechanical Engineers, The, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

ASME. ASME 2015 13th International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Volume 2: Advanced Electronics and Photonics, Packaging Materials and Processing, Interconnect and Reliability, Fundamentals of Thermal and Fluid Transport in Nano, Micro, and Mini Scales. American Society of Mechanical Engineers, The, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nano/Micro integration"

1

Kühnholz, J., and G. Lecarpentier. "Cost Savings with Micro/Nano-Replication." In MicroNano Integration, 277–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18727-8_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ghodssi, Reza, Peter Dykstra, Mariana Meyer, Stephan Koev, Konstantinos Gerasopoulos, Xiaolong Luo, Gary Rubloff, William Bentley, Gregory Payne, and James Culver. "Integration of Diverse Biological Materials in Micro/Nano Devices." In NATO Science for Peace and Security Series B: Physics and Biophysics, 275–85. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3807-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Büttgenbach, Stephanus. "Mikro-Nano-Integration." In Mikrosystemtechnik, 117–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49773-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pierce, Erica L. Bradshaw, and Aik Choon Tan. "Integrating “Omics” Data for Quantitative and Systems Pharmacology in Translational Oncology." In Micro and Nano Flow Systems for Bioanalysis, 187–206. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4376-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurabayashi, Katsuo, Nien-Tsu Huang, and Yi-Chung Tung. "Multiscale, Hierarchical Integration of Soft Polymer Micro- and Nanostructures into Optical MEMS." In Optical Nano and Micro Actuator Technology, 491–518. CRC Press, 2012. http://dx.doi.org/10.1201/b13892-21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Niazi, Sana, and Farideh Doroodgar. "Fundamentals of Femtosecond Laser and Its Application in Ophthalmology." In Fundamentals and Application of Femtosecond Optics [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106701.

Повний текст джерела
Анотація:
Modern advancement in lithographic technology, injection molding, and nano-imprinting has improved the patterning of small structures, resolution, productivity, and materials. Ultrafast laser micro/nano-manufacturing technologies, including nano- and femtosecond lasers, have the advantage of high precision as a result of suppressed heat diffusion to the surroundings. This precision imposes strict requirements on the temporal characteristics of laser pulses. Ultrafast lasers also have advantages in terms of technique, application, and processing. Femtosecond laser (FSL) uses photo disruption to form micro-cavitation bubbles within the cutting plane. The controllable spatiotemporal properties of FSL make it applicable for the three-dimensional fabrication of transparent materials. Using smart materials to create 3D microactuators and microrobots is a newfound application of FSL processing, which enables the integration of optical devices with other components and is practiced in new applications, such as 3D microfluidic, optofluidic, and electro-optic devices. We discuss mechanisms and methods of FSL (including digital micromirror devices, different processes, and interferences). Microlens arrays, micro/nanocrystals, photonic crystals, and optical fibers all have applications in the production of optical devices. Using FSLs, one may create scalable metamaterials with multiscale diameters from tens of nanometers to centimeters. The huge potential of FSL processing in various fields, such as machinery, electronics, biosensors and biomotors, physics, and chemistry, requires more research.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gheorghe, Ion Gheorghe, Carmen Adriana Cirstoiu, Simona-Elena Istriteanu, and Veronica Despa. "Intelligent Integrative Micro-Nano-Robotics." In DAAAM Proceedings, 0075–76. DAAAM International Vienna, 2011. http://dx.doi.org/10.2507/22nd.daaam.proceedings.038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sun, H. B., S. Shoji, X. M. Duan, and S. Kawata. "Chapter 17 Laser micro-nanofabrication for functional photonic crystals." In Nanophotonics - Integrating Photochemistry, Optics and Nano/Bio Materials Studies, Proceedings of the 1st International Nanophotonics Symposium Handai, 275–91. Elsevier, 2004. http://dx.doi.org/10.1016/s1574-0641(04)80022-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rakshit, Jayanta Kumar, and Gaurav Kumar Bharti. "All-Optical Switching and Logic-Gates Design Using Mode (Polarization)-Conversion in Micro-Ring Resonator." In Contemporary Developments in High-Frequency Photonic Devices, 277–302. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8531-2.ch011.

Повний текст джерела
Анотація:
The realization of all-optical polarization switch and all-optical logic gates based on polarization-conversion on single silicon micro-ring resonator (MRR) is demonstrated. By adjusting the mode state of the input source as well as the pump light, the all-optical polarization switch, and hence, all-optical NOT, OR/NOR. AND-NAND logic gates are realized. The design is ultra-compact, ultrafast, and less optical power is required for all-optical polarization-conversion-based switch and logic gates, respectively. The MRR also shows outstanding performance as its Q (quality) factor is very high. The design is robust, simple, stable, easy-to-fabricate, and silicon-on-insulator (SOI) compatible. The structure is compatible for interconnects and capable for integrating in electronics as well as in plasmonics circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nano/Micro integration"

1

Gessner, Thomas, Martina Vogel, Christian Kaufmann, Karla Hiller, Steffen Kurth, Jorg Nestler, and Thomas Otto. "Micro/nano technologies towards smart systems integration." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kumeria, Tushar, Mahaveer Kurkuri, Kerrilyn Diener, Chen Zhang, Luke Parkinson, and Dusan Losic. "Reflectometric interference biosensing using nanopores: integration into microfluidics." In Smart Nano-Micro Materials and Devices, edited by Saulius Juodkazis and Min Gu. SPIE, 2011. http://dx.doi.org/10.1117/12.903217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jin, Jian, Si Di, and Xianshuai Chen. "Fabrication of a high-integration multi-spectral imaging lens and its application." In Optoelectronics and Micro/nano-optics, edited by Min Qiu, Min Gu, Xiaocong Yuan, and Zhiping Zhou. SPIE, 2017. http://dx.doi.org/10.1117/12.2283531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Franzon, Paul D., Steven Lipa, Julie Oh, Thor Thorolfsson, and Rhett Davis. "Memory rich applications for 3D integration." In Smart Materials, Nano-and Micro-Smart Systems, edited by Said F. Al-Sarawi, Vijay K. Varadan, Neil Weste, and Kourosh Kalantar-Zadeh. SPIE, 2008. http://dx.doi.org/10.1117/12.810061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Csaki, A., A. Wolff, T. Schüler, R. Möller, G. Festag, R. Kretschmer, G. Maubach, and W. Fritzsche. "Defined DNA immobilization for a DNA-based micro-nano integration." In DNA-BASED NANOSCALE INTEGRATION: International Symposium on DNA-Based Nanoscale Integration. AIP, 2006. http://dx.doi.org/10.1063/1.2360582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xu, Yan. "Bridging world-to-nanofluidics interfaces through nano-in-nano integration technology." In 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2016. http://dx.doi.org/10.1109/mhs.2016.7824225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bai, Xiao-Dan, and Jing Liu. "Bubble Based Micro/Nano Fabrication Method." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21246.

Повний текст джерела
Анотація:
Micro/nano structures, especially those in one dimensional, such as nano wires, are commonly used building blocks for the bottom-up assembly of electronic, photonic or mechanical devices. However, their fabrications are generally limited to the expensive equipments and methods capable of only working in an extremely small space. A big challenge facing the current scientific society is to overcome this barrier and build up a bridge between the macroscopic manipulation/observation and the fabrication in small world. Here, we proposed a new conceptual fabrication method, which can easily be implemented to synthesize, etch and construct micro or nano structures through manipulating the large scale bubbles composed of specific chemical compounds. The core of the method lies in the chemical reaction occurring at the interfaces between two or more soap bubbles. A surprisingly unique virtue of the bubble is that it can have a rather large diameter however an extremely small membrane thickness, whose smallest size even reaches nano scale. Therefore, the chemical reaction and synthesis occurred in the common boundary of such contacting bubbles would lead to products with very small size. Most important of all, all these were achieved via a much easy and straightforward way. To better understand the physical picture of the new method, the principle and mechanism for the bubble based fabrication process were interpreted. Several fundamental equations for characterizing the bubbles were proposed and preliminarily discussed. As the first trial to demonstrate the new concept, several typical micro structures were successfully fabricated in our lab. Particularly, a micro wire which can be used as tiny temperature sensor was made and tested. Being flexible, easily controllable and observable, environmentally friend and extremely low in cost, the present method is expected to be a significant technical route for making micro/nano structures in the near future. It also indicated for the first time that blowing soap bubbles means not just funny but also opens a new world for micro/nano fabrication.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Howlader, Matiar M. R. "Micro- and nano-systems integration — The next frontier." In 2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). IEEE, 2017. http://dx.doi.org/10.23919/ltb-3d.2017.7947411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wich, Thomas, Christoph Edeler, Christian Stolle, and Sergej Fatikow. "Micro-nano-integration based on automated serial assembly." In 2009 IEEE International Conference on Automation Science and Engineering (CASE 2009). IEEE, 2009. http://dx.doi.org/10.1109/coase.2009.5234150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Donghao, Bin Li, Bo Tang, Wenjuan Xiong, Peng Zhang, Yan Yang, Ruonan Liu, and Zhihua Li. "CMOS-compatible low stress silicon nitride films for photonic integration." In Nanophotonics and Micro/Nano Optics VI, edited by Zhiping Zhou, Kazumi Wada, and Limin Tong. SPIE, 2020. http://dx.doi.org/10.1117/12.2574672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Nano/Micro integration"

1

R.W. Carpick and M.E. Plesha. Development and Integration of Single-Asperity Nanotribology Experiments & Nanoscale Interface Finite Element Modeling for Prediction and Control of Friction and Damage in Micro- and Nano-mechnical Systems. Office of Scientific and Technical Information (OSTI), March 2007. http://dx.doi.org/10.2172/922930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії