Добірка наукової літератури з теми "MuscleBlind Like (MBNL)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MuscleBlind Like (MBNL)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "MuscleBlind Like (MBNL)"

1

Bargiela, Ariadna, Maria Sabater-Arcis, Jorge Espinosa-Espinosa, Miren Zulaica, Adolfo Lopez de Munain, and Ruben Artero. "Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models." Proceedings of the National Academy of Sciences 116, no. 50 (November 21, 2019): 25203–13. http://dx.doi.org/10.1073/pnas.1820297116.

Повний текст джерела
Анотація:
Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Voss, Dillon, Anthony Sloan, Eli Bar, and Eli Bar. "TAMI-49. THE ALTERNATIVE SPLICING FACTOR MBNL1 INHIBITS GLIOBLASTOMA TUMOR INITIATION AND PROGRESSION BY REDUCING HYPOXIA-INDUCED STEMNESS." Neuro-Oncology 22, Supplement_2 (November 2020): ii223—ii224. http://dx.doi.org/10.1093/neuonc/noaa215.936.

Повний текст джерела
Анотація:
Abstract Muscleblind-like-proteins (MBNL) belong to a family of tissue-specific RNA metabolism-regulators that control pre-messenger RNA-splicing (AS). Inactivation of MBNL causes an adult-to-fetal AS transition, resulting in the development of myotonic dystrophy. We have previously shown that the aggressive brain cancer, glioblastoma (GBM), maintains stem-like features (GSC) through hypoxia-induced responses. Accordingly, we hypothesized that the hypoxia-induced responses in GBM might also include MBNL-based AS to promote tumor progression. When cultured in hypoxia, GSCs rapidly export MBNL1 out of the nucleus resulting in significant inhibition of MBNL1 activity. Notably, the hypoxia-regulated inhibition of MBNL1 also resulted in evidence of adult-to-fetal alternative splicing transitions. Forced expression of a constitutively active isoform of MBNL1 inhibited GSC self-renewal and tumor initiation in orthotopic transplantation models. Using a tetracycline-inducible system, induced expression of MBNL1 in established orthotopic tumors dramatically inhibited tumor progression resulting in a significant prolongation of survival. This study reveals that MBNL1 plays an essential role in GBM stemness and tumor progression, whereby hypoxic responses within the tumor inhibit MBNL1 activity, promoting stem-like phenotypes and tumor growth. Reversing these effects on MBNL1 may, therefore, yield potent tumor-suppressor activities, uncovering new therapeutic opportunities to counter this devastating disease.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Overby, Sarah, Estefanía Cerro-Herreros, Jorge Espinosa-Espinosa, Irene González-Martínez, Nerea Moreno, Juan Fernández-Costa, Jordina Balaguer-Trias, et al. "BlockmiR AONs as Site-Specific Therapeutic MBNL Modulation in Myotonic Dystrophy 2D and 3D Muscle Cells and HSALR Mice." Pharmaceutics 15, no. 4 (March 31, 2023): 1118. http://dx.doi.org/10.3390/pharmaceutics15041118.

Повний текст джерела
Анотація:
The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yadava, Ramesh S., Mahua Mandal, and Mani S. Mahadevan. "Studying the Effect of MBNL1 and MBNL2 Loss in Skeletal Muscle Regeneration." International Journal of Molecular Sciences 25, no. 5 (February 26, 2024): 2687. http://dx.doi.org/10.3390/ijms25052687.

Повний текст джерела
Анотація:
Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

González, Àlex L., Daniel Fernández-Remacha, José Ignacio Borrell, Jordi Teixidó, and Roger Estrada-Tejedor. "Cognate RNA-Binding Modes by the Alternative-Splicing Regulator MBNL1 Inferred from Molecular Dynamics." International Journal of Molecular Sciences 23, no. 24 (December 18, 2022): 16147. http://dx.doi.org/10.3390/ijms232416147.

Повний текст джерела
Анотація:
The muscleblind-like protein family (MBNL) plays a prominent role in the regulation of alternative splicing. Consequently, the loss of MBNL function resulting from sequestration by RNA hairpins triggers the development of a neuromuscular disease called myotonic dystrophy (DM). Despite the sequence and structural similarities between the four zinc-finger domains that form MBNL1, recent studies have revealed that the four binding domains have differentiated splicing activity. The dynamic behaviors of MBNL1 ZnFs were simulated using conventional molecular dynamics (cMD) and steered molecular dynamics (sMD) simulations of a structural model of MBNL1 protein to provide insights into the binding selectivity of the four zinc-finger (ZnF) domains toward the GpC steps in YGCY RNA sequence. In accordance with previous studies, our results suggest that both global and local residue fluctuations on each domain have great impacts on triggering alternative splicing, indicating that local motions in RNA-binding domains could modulate their affinity and specificity. In addition, all four ZnF domains provide a distinct RNA-binding environment in terms of structural sampling and mobility that may be involved in the differentiated MBNL1 splicing events reported in the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verbeeren, Jens, Joana Teixeira, and Susana M. D. A. Garcia. "The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism." PLOS Genetics 19, no. 12 (December 22, 2023): e1011109. http://dx.doi.org/10.1371/journal.pgen.1011109.

Повний текст джерела
Анотація:
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Terenzi, Fulvia, and Andrea N. Ladd. "Conserved developmental alternative splicing of muscleblind-like (MBNL) transcripts regulates MBNL localization and activity." RNA Biology 7, no. 1 (January 2010): 43–55. http://dx.doi.org/10.4161/rna.7.1.10401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

López-Martínez, Andrea, Patricia Soblechero-Martín, Laura de-la-Puente-Ovejero, Gisela Nogales-Gadea, and Virginia Arechavala-Gomeza. "An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I." Genes 11, no. 9 (September 22, 2020): 1109. http://dx.doi.org/10.3390/genes11091109.

Повний текст джерела
Анотація:
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sznajder, Łukasz J., and Maurice S. Swanson. "Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy." International Journal of Molecular Sciences 20, no. 13 (July 9, 2019): 3365. http://dx.doi.org/10.3390/ijms20133365.

Повний текст джерела
Анотація:
Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant DMPK (DM1) and CNBP (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUGexp, CCUGexp) RNAs, respectively. These CUGexp and CCUGexp RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tanner, Matthew K., Zhenzhi Tang, and Charles A. Thornton. "Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy." Nucleic Acids Research 49, no. 4 (January 27, 2021): 2240–54. http://dx.doi.org/10.1093/nar/gkab022.

Повний текст джерела
Анотація:
Abstract Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "MuscleBlind Like (MBNL)"

1

Fleming, Victoria Amber. "Complex Regulation Of Neurofibromatosis Type I Exon 23a Inclusion By The CUG-BP AND ETR-3-LIKE Factors (CELF) And Muscleblind-Like (MBNL) Proteins." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333490345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vergnol, Amélie. "Les isoformes CaVβ1 : rôle dans la formation de la jonction neuromusculaire et implication dans la physiopathologie de la Dystrophie Myotonique de type 1". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS305.

Повний текст джерела
Анотація:
Quatre protéines CaVβ (CaVβ1 à CaVβ4) sont connues comme des sous-unités régulatrices des canaux Ca2+ dépendants du voltage (Voltage-gated Ca2+ Channels, VGCC), chacune ayant des profils d'expression spécifiques selon leur fonction. Bien qu'elles soient principalement reconnues pour leur rôle dans la régulation des VGCC, les protéines CaVβ peuvent également agir indépendamment de ces canaux, en tant que régulateurs de l'expression génique. Parmi ces protéines, CaVβ1 est exprimée dans le muscle squelettique sous différentes isoformes. L'isoforme adulte constitutive, CaVβ1D, est localisée au niveau du sarcolemme et plus précisément à la triade, où elle joue un rôle crucial dans la régulation de CaV1 et ainsi du mécanisme de Couplage Excitation-Contraction (CEC), essentiel à la contraction musculaire. Dans cette thèse, nous nous sommes concentrés sur les isoformes embryonnaires/périnatales de CaVβ1, moins étudiées, y compris la CaVβ1E précédemment décrite. Nous avons étudié leurs rôles dans les systèmes neuromusculaire et musculaire. En effet, la protéine CaVβ1 s'est révélée essentielle au développement correct de la Jonction NeuroMusculaire (JNM), mais l'implication spécifique de ses isoformes y reste inconnue. Notre étude a donc évalué le rôle des isoformes CaVβ1 à différents stades de la formation et de la maturation/maintien de la JNM. Parallèlement, étant donné la dérégulation de CaVβ1 dans la dystrophie myotonique de type 1 (DM1), nous avons exploré son rôle fonctionnel dans ce contexte pathologique. Nous avons tout d'abord identifié CaVβ1A comme une isoforme exprimée pendant l'embryogenèse et les stades périnataux. Nos résultats ont révélé que l'expression des isoformes CaVβ1 est régulée par l'activation différentielle des promoteurs au cours du développement : un promoteur1 dans l'exon 1 contrôle l'expression de CaVβ1A/E, tandis qu'un promoteur2 dans l'exon 2B contrôle l'expression de CaVβ1D. Il est intéressant de noter qu'un endommagement du nerf déclenche une réactivation du promoteur1, conduisant à la réexpression des transcrits de CaVβ1A/E.De plus, nous avons découvert que les isoformes embryonnaires/périnatales de CaVβ1 sont essentielles pour la pré-empreinte in vitro des myotubes et que leur expression postnatale influence la maturation/maintien de la JNM. Dans le contexte pathologique de la DM1, nous avons observé une augmentation de l'expression de CaVβ1A/E, qui semble atténuer la myotonie, un symptôme caractéristique de cette pathologie. De plus, nous avons trouvé que la modulation de leur expression est liée aux protéines MBNL, centrales dans la physiopathologie de la DM1. En conclusion, ce travail de thèse a permis de clarifier les connaissances sur les différentes isoformes de CaVβ1 dans le muscle squelettique et d'apporter de nouveaux éléments sur leur rôle dans deux contextes indépendants : le développement de la JNM et de la physiopathologie de la DM1. Comprendre la régulation des isoformes protéiques de CaVβ1 dans le muscle squelettique est essentiel pour déchiffrer les mécanismes de l'homéostasie musculaire et potentiellement identifier de nouvelles approches thérapeutiques pour faire face aux pathologies musculaires
Four CaVβ proteins (CaVβ1 to CaVβ4) are described as regulatory subunit of Voltage-gated Ca2+ channel (VGCC), each exhibiting specific expression pattern in excitable cells based on their function. While primarily recognized for their role in VGCC regulation, CaVβ proteins also function independently of channels, acting as regulators of gene expression. Among these, CaVβ1 is expressed in skeletal muscle as different isoforms. The adult constitutive isoform, CaVβ1D, is located at the sarcolemma and more specifically at the triad, where it plays a crucial role in regulating CaV1 to control Excitation-Contraction Coupling (ECC) mechanism, essential for muscle contraction.In this thesis, we further explored the less studied CaVβ1 isoforms, with a particular focus on embryonic/perinatal variants, including the previously described CaVβ1E. We investigated their roles in the neuromuscular and muscular systems. Indeed, CaVβ1 proteins have been showed as essential for NeuroMuscular Junction (NMJ) development, though the involvement of specific isoform remains unclear. Our investigation assessed the role of CaVβ1 isoforms at different stages of NMJ formation and maturation/maintenance. Additionally, given the deregulation of CaVβ1 in Myotonic Dystrophy Type 1 (DM1), we explored its functional role in this muscular pathological context.First, we identified CaVβ1A as another isoform expressed during embryogenesis and perinatal stages. Our findings revealed that CaVβ1 isoforms expressions are regulated by the differential activation of promoters during development: a promoter1 in exon 1 drives CaVβ1A/E expressions, while a promoter2 in exon 2B controls CaVβ1D expression. Interestingly, nerve damage in adult muscle triggers a shift toward the promoter1 activation and leading to the re-expression of CaVβ1A/E transcripts. Furthermore, we found that CaVβ1 embryonic/perinatal isoforms are critical for proper in vitro pre-patterning of myotubes and that their postnatal expressions influences NMJ maturation/maintenance. In the pathological context of DM1, we observed the increased expression of CaVβ1A/E, which appears to mitigate myotonia symptoms. In addition, we found that the modulation of their expression is linked with MBNL proteins, which are central in the pathophysiology of DM1. In conclusion, this thesis work has clarified knowledge of the various CaVβ1 isoforms in skeletal muscle and provides new insights into their role in two independent contexts of NMJ development and DM1 pathophysiology. Understanding CaVβ1 protein regulation in skeletal muscle is essential to decipher muscle homeostasis mechanisms and potentially identify new therapeutic targets to face muscular disorders
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "MuscleBlind Like (MBNL)"

1

Moreno, Nerea, Irene González-Martínez, Rubén Artero, and Estefanía Cerro-Herreros. "Rapid Determination of MBNL1 Protein Levels by Quantitative Dot Blot for the Evaluation of Antisense Oligonucleotides in Myotonic Dystrophy Myoblasts." In Methods in Molecular Biology, 207–15. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_13.

Повний текст джерела
Анотація:
AbstractWestern blot assays are not adequate for high-throughput screening of protein expression because it is an expensive and time-consuming technique. Here we demonstrate that quantitative dot blots in plate format are a better option to determine the absolute contents of a given protein in less than 48 h. The method was optimized for the detection of the Muscleblind-like 1 protein in patient-derived myoblasts treated with a collection of more than 100 experimental oligonucleotides.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії