Зміст
Добірка наукової літератури з теми "Muon atmosphérique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Muon atmosphérique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Muon atmosphérique"
Bailly-Salins, Louis. "Atmοspheric muοn studies and light sterile neutrinο search with ΚΜ3ΝeΤ/ΟRCA". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC228.
Повний текст джерелаThe KM3NeT collaboration is currently building two Cherenkov neutrino telescopes at the bottom of the Mediterranean sea, ORCA (Oscillation Research with Cosmics in the Abyss) to measure atmospheric neutrino oscillations and ARCA (Astroparticle Research with Cosmics in the Abyss) to detect neutrinos from astrophysical sources. In this manuscript, after reviewing the status of neutrino oscillation measurements and light sterile neutrino searches in the first chapter, the KM3NeT detectors are presented in the second chapter.In chapter 3, a calibration method based on the quality of the reconstructed atmospheric muon tracks is used to cross-validate the position and orientation calibration procedures of KM3NeT detectors, and a new muon-based method is developed to perform the time calibration in a much less CPU intensive way than the previous method. Then, in chapter 4, atmospheric muons are further studied to select those stopping within the instrumented volume of KM3NeT/ORCA. We show that with a very partial configuration (5%) of the ORCA detector, more than 8000 stopping muons can be selected per day with a purity of more than 95% and an excellent agreement between data and simulations.Finally, chapter 5 describes the first oscillation analysis performed with ORCA data to search for a light sterile neutrino. No positive signal is found at a 90% confidence level, and competitive limits are put on the magnitude of the mixing of muon and tau neutrinos with a sterile state
Creusot, Alexandre. "Etude des détecteurs de surface de l'observatoire Pierre Auger : tests, simulation et étalonnage." Paris 11, 2004. http://www.theses.fr/2004PA112176.
Повний текст джерелаThe Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of this showers needs a accurate understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare in the fifth chapter this results with those of the Observatory detectors. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition began this year. The construction should finish end of 2005. From this moment, The Pierre Auger Observatory should allow us to solve the cosmic rays puzzle
Melissas, Maximilien. "Reconstruction de muons atmosphériques avec ANTARES." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2007. http://tel.archives-ouvertes.fr/tel-00279916.
Повний текст джерелаMelissas, Maximilien-Dimitri. "Reconstruction de muons atmosphériques avec ANTARES." Aix-Marseille 2, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX22042.pdf.
Повний текст джерелаANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultipliers tubes, dispatched on 12 lines, in order to detect Cerenkov cone due to muon induced by neutrino interaction in the detector. Currently the five firsts lines have been deployed. A first job consist to study stability of detector calibration, which is a necessary step to understand the detector operation Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. Extracted parameters being compatible with atmospheric muon simulation, we propose quality critters aiming to reject badly reconstructed events. Those were applied to real data in order to make a preliminary analysis of atmospherics muon with a 5-lines detector
Béné, Samuel. "Imagerie tomograpbique d'un volcan à l'aide des muons atmosphériques." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22786/document.
Повний текст джерелаAtmospheric muons are elementary particles originating from the interaction of high energy cosmic rays with atoms in the upper atmosphere. Their ability to travel through a large amount of matter and their abundance at ground level allows for their flux to be used as a probe for the radiography of big objects. This technique, muography, can in particular be of interest for the study of volcanoes. The Tomuvol collaboration, within which this thesis took place, aims at developing a detector and analysis techniques allowing to perform such a measurment, using a volcano from Auvergne as a case study : the Puy de Dôme. This document describes the author’s contributions to this work, focusing on the intrumentation aspect first, with the calibration and optimisation of the GRPC chambers used to perform the measurment. The performances of the detector during the various campaigns of data acquisition at the base of the Puy de Dôme are also sumed up. A second part is dedicated to the physical analysis of the data with, firstly, the description of the Monte-Carlo simulations that were developed using the GEANT4 software. Then, a kernel-like estimation method of the transmitted flux of atmospheric muons is described, and the density map of the Puy de Dôme thus obtained is compared to results coming from geophysical techniques
Picq, Claire. "Détermination du flux de muons atmosphériques avec le télescope à neutrinos ANTARES." Paris 7, 2009. http://www.theses.fr/2009PA077140.
Повний текст джерелаThe neutrino telescope ANTARES is a deep-sea detector located in the Mediterranean Sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature of cosmic rays, their origins and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (>TeV) for observation of the universe. This thesis is dedicated to the study of the main background noise of the detect of, due to the passage of atmospheric muons produced by high energy cosmic rays interacting with atmospheric nuclei. The first part of this thesis focuses on the study of the detector. The different characteristics and the calibration of the detector as well as the techniques of monitoring the electronic are described. The second part of this thesis reports the various results obtained on the atmospheric muons with the five line detector. A detailed presentation of the simulations used is presented. The first difficulty of detecting atmospheric muons is due to the geometry of the detector. The second is due to the fact that the atmospheric muons often arrive in bundles and that the number of muons in these bundles is unknown at a depth of 2500 m. A first study based on simulations makes it possible to discriminate between the muons alone and the bundles of muons. A second study is dedicated to the measurement of the muon flux depending on the slant depth. The measurement is compatible with the results of other instruments when the systematic uncertainties are taken into account
Li, Cavoli Pierre. "Études théoriques et expérimentales des effets singuliers induits par les muons atmosphériques sur les technologies numériques d’échelle nanométrique." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4098/document.
Повний текст джерелаThis study concerns the domain of the microelectronics. It consists in the studyof the impact of the 3D morphology of the energy deposit on the Single EventEffect (SEE) modeling, induced by atmospheric muons. Over a first phase, theapproach has consisted in the modeling of the energy deposit induced by protonsin nanometric volumes. For that purpose the use of the Monte Carlo code GEANT4has allowed to simulate and stock in a database the tracks characteristics of theenergy deposit induced by protons. Once the approach validated for the protons,simulations of the energy deposit induced by muons have been realized. A CCDcamera has been used in order to measure the radiative atmospheric environmentand to constrain the modeling of the energy deposit induced by muons. This studyhighlights and quantify the contribution of the radial distribution of the energydeposit incuced by protons in nanometric volumes for the SEE prediction. On theother hand, the study shows that the contribution of the radial distribution of theenergy deposit induced by muons in nanometric volumes has a negligeable impacton the SEE modeling. It will be interesting to realize measurements of the energydeposit induced by muons in nanometric technologies under accelerator. This willallow to bring experimental data still nonexistant necessary to the developpmentof new physical models more accurate on the modelization of the energy depositinduced by muons
Vernet, Kinson. "Imagerie densitométrique 3D des volcans par muographie." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC112.
Повний текст джерелаMuography is an imaging technique in particle physics where atmospheric muons passing through a target are used to determine information about the interior of the target : density distribution or chemical composition via the atomic number. Depending on the energy of the muons and the amount of matter they have to cross, some of them will survive and others will be stopped by the target. And, the diffusion of the muons depends, to a first approximation, on their momentum and the average atomic number along their flight path. Muography proposes, from the measurement of the transmission and/or diffusion of muons through a target, to provide information about its interior.There are currently two types of muography : transmission muography, where the transmitted flux of muons through the target is measured to infer the density distribution of that target, and diffusion muography, where the diffusion of muons through the target is used to determine the distribution of the atomic number of the target. This thesis discusses transmission muography in order to radiography volcanoes.In the case of transmission muography, a muon telescope is used to measure the transmitted flux of atmospheric muons through the target. This flux is, to a first approximation, a bijective function of the amount of matter encountered by the muons. The idea is to invert the measured number of muons into a density estimation of the target.There are other imaging methods in geophysics that can be used to reconstruct the density of a target. This is the case, for example, of gravimetry and seismic imaging. These so-called conventional methods have weaknesses. For these methods, the inversion problem is either ill-posed, i.e. there is no unique solution, or the solution presents large variations for small variations of the parameters on which it depends. A set of additional constraints are then added to remove the non-uniqueness.In muography however, the inversion problem is well posed and the solution is unique. Conventional geophysical methods alone cannot determine the density of a target. Combined with muography, they have great potential, either by providing other information on the rock and/or on the nature of the water, or by improving the accuracy of the target density reconstruction.Several experiments use the CSDA (Continuous Slowing Down Approximation) approximation to estimate the survival probability of muons through a target. Using this approximation, thus neglecting the stochastic character of the interaction of muons with matter, underestimates the muon survival probability and therefore induces systematic effects on the density reconstruction. In standard rock kilometers the effect is 3% - 8% depending on the modeling of the interaction of high energy muons with matter. In addition, a bad estimation of the background of the low momentum muons affecting the measurement of the signal results in an underestimation of the density of the target with respect to the gravimetry. This probably comes from the use of the analytical approximation to simulate the propagation of the muons through the target and the difficulty of rejecting in the measurement those with low momentum. For these reasons, in the Muon IMaging (MIM) experiment (where this thesis was conducted), we use a Monte Carlo treatment to simulate the muon transport through the target. In this case, we can accurately estimate the effet of these low momentum muons on the density reconstruction. One of the techniques used in our experiment, to make the low momentum muons scatter so that they can be statistically rejected, is to insert a thickness of lead between the telescope detection planes. (...)
Martraire, Diane. "Étude du pouvoir de discrimination des primaires initiant les grandes gerbes atmosphériques avec des réseaux de détecteurs au sol : analyse des rayons cosmiques de ultra haute énergie détectés à l’observatoire Pierre Auger, Estimation des performances pour la detection de gamma de très haute énergie du future observatoire LHAASO." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112276/document.
Повний текст джерелаDuring the past century, ultra-high-energy cosmic rays (UHECR), those with an energy larger than 1018 eV, remain as a mystery: What are cosmic rays? Where do they come from? How do they attain their huge energy? When these charged particles strike the earth's atmosphere, they dissipate their energy by generating a shower of secondary particles whose development is significantly different depending on the nature of the primaries. The Pierre Auger observatory, with its hybrid structure and huge size network of ground detectors, can shed some light into these questions.The study of the composition of UHECR was performed with the Pierre Auger apparatus. This is crucial both to understand the hadronic interactions, which govern the evolution of showers, and to identify their sources. It can help to understand the origin of the energy spectrum cut-off: is it the GZK cut-off or the exhaustion of sources? These reasons motivate the first part of this thesis: the development of a method to extract the muonic component of air showers and deduce the implications on the composition of UHECR at the Pierre Auger observatory. The results of this method show a dependence of the composition with the distance to the axis of the shower, which could help to improve the hadronic models. The determination of the muon component is limited by the surface detector setup.The second part is devoted to the new observatory in China, LHAASO. This project focuses on the study of gamma rays with an energy higher than 30 TeV, which probe the acceleration of protons in the galaxy, providing indirect information on cosmic rays. Moreover, the observatory studies cosmic rays between 10 TeV and 1 EeV, one of the regions where the energy spectrum presents a break. This region requires the ability to discriminate gamma rays and cosmic rays. For this reason, one of the detectors of LHAASO, the KM2A, was simulated and its power of discrimination gamma/hadron evaluated
Частини книг з теми "Muon atmosphérique"
GAILLER, Lydie, Jean-François LÉNAT, and Franck DONNADIEU. "La surveillance gravimétrique des volcans." In Aléas et surveillance de l’activité volcanique 3, 235–62. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9046.ch4.
Повний текст джерела